Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors

Abstract

Preclinical studies in small and large animal models using helper-dependent adenoviral vectors (HDAds) have generated promising results for the treatment of genetic diseases. However, clinical translation is complicated by the dose-dependent, capsid-mediated acute toxic response following systemic vector injection. With the advancements in vectorology, a better understanding of vector-mediated toxicity, and improved delivery methods, HDAds may emerge as an important vector for gene therapy of genetic diseases and this report highlights recent progress and prospects in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Palmer DJ, Ng P . Helper-dependent adenoviral vectors for gene therapy. Hum Gene Ther 2005; 16: 1–16.

    Article  CAS  Google Scholar 

  2. Toietta G, Mane VP, Norona WS, Finegold MJ, Ng P, McDonagh AF et al. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci USA 2005; 102: 3930–3935.

    Article  CAS  Google Scholar 

  3. Brunetti-Pierri N, Nichols TC, McCorquodale S, Merricks E, Palmer DJ, Beaudet AL et al. Sustained phenotypic correction of canine hemophilia B after systemic administration of helper-dependent adenoviral vector. Hum Gene Ther 2005; 16: 811–820.

    Article  CAS  Google Scholar 

  4. McCormack Jr WM, Seiler MP, Bertin TK, Ubhayakar K, Palmer DJ, Ng P et al. Helper-dependent adenoviral gene therapy mediates long-term correction of the clotting defect in the canine hemophilia A model. J Thromb Haemost 2006; 4: 1218–1225.

    Article  CAS  Google Scholar 

  5. Mian A, McCormack Jr WM, Mane V, Kleppe S, Ng P, Finegold M et al. Long-term correction of ornithine transcarbamylase deficiency by WPRE-mediated overexpression using a helper-dependent adenovirus. Mol Ther 2004; 10: 492–499.

    Article  CAS  Google Scholar 

  6. Koeberl DD, Sun B, Bird A, Chen Y, Oka K, Chan L . Efficacy of helper-dependent adenovirus vector-mediated gene therapy in murine glycogen storage disease type Ia. Mol Ther 2007; 15: 1253–1258.

    Article  CAS  Google Scholar 

  7. Nomura S, Merched A, Nour E, Dieker C, Oka K, Chan L . Low-density lipoprotein receptor gene therapy using helper-dependent adenovirus produces long-term protection against atherosclerosis in a mouse model of familial hypercholesterolemia. Gene Therapy 2004; 11: 1540–1548.

    Article  CAS  Google Scholar 

  8. Kiang A, Hartman ZC, Liao S, Xu F, Serra D, Palmer DJ et al. Fully deleted adenovirus persistently expressing GAA accomplishes long-term skeletal muscle glycogen correction in tolerant and nontolerant GSD-II mice. Mol Ther 2006; 13: 127–134.

    Article  CAS  Google Scholar 

  9. Dudley RW, Lu Y, Gilbert R, Matecki S, Nalbantoglu J, Petrof BJ et al. Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum Gene Ther 2004; 15: 145–156.

    Article  CAS  Google Scholar 

  10. Jiang Z, Schiedner G, Gilchrist SC, Kochanek S, Clemens PR . CTLA4Ig delivered by high-capacity adenoviral vector induces stable expression of dystrophin in mdx mouse muscle. Gene Therapy 2004; 11: 1453–1461.

    Article  CAS  Google Scholar 

  11. Matecki S, Dudley RW, Divangahi M, Gilbert R, Nalbantoglu J, Karpati G et al. Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral genes. Am J Physiol Lung Cell Mol Physiol 2004; 287: L569–L576.

    Article  CAS  Google Scholar 

  12. Deol JR, Danialou G, Larochelle N, Bourget M, Moon JS, Liu AB et al. Successful compensation for dystrophin deficiency by a helper-dependent adenovirus expressing full-length utrophin. Mol Ther 2007; 15: 1767–1774.

    Article  CAS  Google Scholar 

  13. Huang B, Schiefer J, Sass C, Landwehrmeyer GB, Kosinski CM, Kochanek S . High-capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo. Hum Gene Ther 2007; 18: 303–311.

    Article  CAS  Google Scholar 

  14. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 2006; 108: 2554–2561.

    Article  CAS  Google Scholar 

  15. Baker AH, McVey JH, Waddington SN, Di Paolo NC, Shayakhmetov DM . The influence of blood on in vivo adenovirus bio-distribution and transduction. Mol Ther 2007; 15: 1410–1416.

    Article  CAS  Google Scholar 

  16. Muruve DA, Cotter MJ, Zaiss AK, White LR, Liu Q, Chan T et al. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 2004; 78: 5966–5972.

    Article  CAS  Google Scholar 

  17. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P . Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004; 15: 35–46.

    Article  CAS  Google Scholar 

  18. Lyons M, Onion D, Green NK, Aslan K, Rajaratnam R, Bazan-Peregrino M et al. Adenovirus type 5 interactions with human blood cells may compromise systemic delivery. Mol Ther 2006; 14: 118–128.

    Article  CAS  Google Scholar 

  19. Stone D, Liu Y, Shayakhmetov D, Li ZY, Ni S, Lieber A . Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol 2007; 81: 4866–4871.

    Article  CAS  Google Scholar 

  20. Othman M, Labelle A, Mazzetti I, Elbatarny HS, Lillicrap D . Adenovirus-induced thrombocytopenia: the role of von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood 2007; 109: 2832–2839.

    CAS  PubMed  Google Scholar 

  21. Manickan E, Smith JS, Tian J, Eggerman TL, Lozier JN, Muller J et al. Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol Ther 2006; 13: 108–117.

    Article  CAS  Google Scholar 

  22. Brunetti-Pierri N, Palmer DJ, Mane V, Finegold M, Beaudet AL, Ng P . Increased hepatic transduction with reduced systemic dissemination and proinflammatory cytokines following hydrodynamic injection of helper-dependent adenoviral vectors. Mol Ther 2005; 12: 99–106.

    Article  CAS  Google Scholar 

  23. Machemer T, Engler H, Tsai V, Lee S, Cannon-Carlson S, Voloch M et al. Characterization of hemodynamic events following intravascular infusion of recombinant adenovirus reveals possible solutions for mitigating cardiovascular responses. Mol Ther 2005; 12: 254–263.

    Article  CAS  Google Scholar 

  24. Basner-Tschakarjan E, Gaffal E, O’Keeffe M, Tormo D, Limmer A, Wagner H et al. Adenovirus efficiently transduces plasmacytoid dendritic cells resulting in TLR9-dependent maturation and IFN-alpha production. J Gene Med 2006; 8: 1300–1306.

    Article  CAS  Google Scholar 

  25. Iacobelli-Martinez M, Nemerow GR . Preferential activation of Toll-like receptor nine by CD46-utilizing adenoviruses. J Virol 2007; 81: 1305–1312.

    Article  CAS  Google Scholar 

  26. Hartman ZC, Black EP, Amalfitano A . Adenoviral infection induces a multi-faceted innate cellular immune response that is mediated by the toll-like receptor pathway in A549 cells. Virology 2007; 358: 357–372.

    Article  CAS  Google Scholar 

  27. Hartman ZC, Kiang A, Everett RS, Serra D, Yang XY, Clay TM et al. Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J Virol 2007; 81: 1796–1812.

    Article  CAS  Google Scholar 

  28. Cerullo V, Seiler MP, Mane V, Brunetti-Pierri N, Clarke C, Bertin TK et al. Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral vectors. Mol Ther 2007; 15: 378–385.

    Article  CAS  Google Scholar 

  29. Zhu J, Huang X, Yang Y . Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J Virol 2007; 81: 3170–3180.

    Article  CAS  Google Scholar 

  30. Hensley SE, Amalfitano A . Toll-like receptors impact on safety and efficacy of gene transfer vectors. Mol Ther 2007; 15: 1417–1422.

    Article  CAS  Google Scholar 

  31. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  Google Scholar 

  32. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007; 13: 419–422.

    Article  CAS  Google Scholar 

  33. Hodges BL, Taylor KM, Chu Q, Scull SE, Serriello RG, Anderson SC et al. Local delivery of a viral vector mitigates neutralization by antiviral antibodies and results in efficient transduction of rabbit liver. Mol Ther 2005; 12: 1043–1051.

    Article  CAS  Google Scholar 

  34. Brunetti-Pierri N, Ng T, Iannitti DA, Palmer DJ, Beaudet AL, Finegold MJ et al. Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates. Hum Gene Ther 2006; 17: 391–404.

    Article  CAS  Google Scholar 

  35. Crettaz J, Berraondo P, Mauleon I, Ochoa L, Shankar V, Barajas M et al. Intrahepatic injection of adenovirus reduces inflammation and increases gene transfer and therapeutic effect in mice. Hepatology 2006; 44: 623–632.

    Article  CAS  Google Scholar 

  36. Lievens J, Snoeys J, Vekemans K, Van Linthout S, de Zanger R, Collen D et al. The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Therapy 2004; 11: 1523–1531.

    Article  CAS  Google Scholar 

  37. Snoeys J, Lievens J, Wisse E, Jacobs F, Duimel H, Collen D et al. Species differences in transgene DNA uptake in hepatocytes after adenoviral transfer correlate with the size of endothelial fenestrae. Gene Therapy 2007; 14: 604–612.

    Article  CAS  Google Scholar 

  38. Brunetti-Pierri N, Stapleton GE, Palmer DJ, Zuo Y, Mane VP, Finegold MJ et al. Pseudo-hydrodynamic delivery of helper-dependent adenoviral vectors into non-human primates for liver-directed gene therapy. Mol Ther 2007; 15: 732–740.

    Article  CAS  Google Scholar 

  39. Brunetti-Pierri N, Stapleton G, Law M, Palmer D, Zuo Y, Beaudet A et al. Balloon occlusion catheter-based delivery of HDAd into the nonhuman primate liver results in stable, high level transgene expression with minimal toxicity. Mol Ther 2007; 15: S368.

    Article  Google Scholar 

  40. Mok H, Palmer DJ, Ng P, Barry MA . Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 2005; 11: 66–79.

    Article  CAS  Google Scholar 

  41. Croyle MA, Le HT, Linse KD, Cerullo V, Toietta G, Beaudet A et al. PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Therapy 2005; 12: 579–587.

    Article  CAS  Google Scholar 

  42. De Geest B, Snoeys J, Van Linthout S, Lievens J, Collen D . Elimination of innate immune responses and liver inflammation by PEGylation of adenoviral vectors and methylprednisolone. Hum Gene Ther 2005; 16: 1439–1451.

    Article  CAS  Google Scholar 

  43. Wonganan P, Leggiero E, Brasky K, Dekker J, Astone D, Pastore L et al. Toxicology of PEGylated helper-dependent adenovirus in non-human primates. Mol Ther 2007; 15: S6.

    Google Scholar 

  44. Koehler DR, Frndova H, Leung K, Louca E, Palmer D, Ng P et al. Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J Gene Med 2005; 7: 1409–1420.

    Article  CAS  Google Scholar 

  45. Hiatt P, Brunetti-Pierri N, Koehler D, McConnell R, Katkin J, Palmer DJ et al. Aerosol delivery of helper-dependent adenoviral vector into nonhuman primate lungs results in high efficiency pulmonary transduction with minimal toxicity. Mol Ther 2005; 11: 317.

    Google Scholar 

  46. Hiatt P, Brunetti-Pierri N, McConnell R, Palmer D, Zuo Y, Finegold M et al. Bronchoscope-guided, targeted lobar aerosolization of HDAd into nonhuman primate lungs results in uniform, high level pulmonary transduction, long term transgene expression and negligible toxicity. Mol Ther 2007; 15: S161.

    Google Scholar 

  47. Xiong W, Goverdhana S, Sciascia SA, Candolfi M, Zirger JM, Barcia C et al. Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J Virol 2006; 80: 27–37.

    Article  CAS  Google Scholar 

  48. Barcia C, Jimenez-Dalmaroni M, Kroeger KM, Puntel M, Rapaport AJ, Larocque D et al. One-year expression from high-capacity adenoviral vectors in the brains of animals with pre-existing anti-adenoviral immunity: clinical implications. Mol Ther 2007; 15: 2154–2163.

    Article  CAS  Google Scholar 

  49. Butti E, Bergami A, Recchia A, Brambilla E, Franciotta D, Cattalini A et al. Absence of an intrathecal immune reaction to a helper-dependent adenoviral vector delivered into the cerebrospinal fluid of non-human primates. Gene Therapy 2007; 15: 233–238.

    Article  Google Scholar 

  50. Jiang Z, Schiedner G, van Rooijen N, Liu CC, Kochanek S, Clemens PR . Sustained muscle expression of dystrophin from a high-capacity adenoviral vector with systemic gene transfer of T cell costimulatory blockade. Mol Ther 2004; 10: 688–696.

    Article  CAS  Google Scholar 

  51. Deol JR, Danialou G, Larochelle N, Bourget M, Moon JS, Liu AB et al. Successful compensation for dystrophin deficiency by a helper-dependent adenovirus expressing full-length utrophin. Mol Ther 2007; 15: 1767–1774.

    Article  CAS  Google Scholar 

  52. Bilbao R, Reay DP, Wu E, Zheng H, Biermann V, Kochanek S et al. Comparison of high-capacity and first-generation adenoviral vector gene delivery to murine muscle in utero. Gene Therapy 2005; 12: 39–47.

    Article  CAS  Google Scholar 

  53. Tosi MF, van Heeckeren A, Ferkol TW, Askew D, Harding CV, Kaplan JM . Effect of Pseudomonas-induced chronic lung inflammation on specific cytotoxic T-cell responses to adenoviral vectors in mice. Gene Therapy 2004; 11: 1427–1433.

    Article  CAS  Google Scholar 

  54. Koehler DR, Martin B, Corey M, Palmer D, Ng P, Tanswell AK et al. Readministration of helper-dependent adenovirus to mouse lung. Gene Therapy 2006; 13: 773–780.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunetti-Pierri, N., Ng, P. Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors. Gene Ther 15, 553–560 (2008). https://doi.org/10.1038/gt.2008.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.14

Keywords

This article is cited by

Search

Quick links