Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient tuberculosis treatment in mice using chemotherapy and immunotherapy with the combined DNA vaccine encoding Ag85B, MPT-64 and MPT-83

Abstract

Although most cases of tuberculosis (TB) can be cured with antibiotics, relapse is common if patients do not continue chemotherapy for at least 6 months. Thus, improved therapeutic strategies are urgently needed. We previously found that the combined DNA vaccine encoding the Mycobacterium tuberculosis proteins Ag85B, MPT-64 and MPT-83 protected mice from TB following H37Rv challenge and considered whether this combined DNA vaccine has a therapeutic effect. In the present work, we demonstrate that boosting the efficiency of the immune system with the combined DNA vaccine may be a valuable adjunct to shorten the duration of antibacterial chemotherapy. Mice treated with the combined DNA vaccine along with isoniazid and pyrazinamide showed significantly higher interferon-γ responses to a mixture of the three specific antigens (P<0.001), which were accompanied by a significant reduction in colony-forming unit in H37Rv-infected animals 3–5 months after treatment (P<0.001). These results suggest that the combined DNA vaccine along with conventional TB chemotherapy has strong potential for TB immunotherapy and may provide new alternatives to control the disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Flynn JL, Chan J . Immunology of tuberculosis. Annu Rev Immunol 2001; 19: 93–129.

    Article  CAS  PubMed  Google Scholar 

  2. Rook GA, Seah G, Ustianowski A . M. tuberculosis: immunology and vaccination. Eur Respir J 2001; 17: 537–557.

    Article  CAS  PubMed  Google Scholar 

  3. Young D, Dye C . The development and impact of tuberculosis vaccines. Cell 2006; 124: 683–687.

    Article  CAS  PubMed  Google Scholar 

  4. Young DB, Duncan K . Prospects for new interventions in the treatment and prevention of mycobacterial disease. Annu Rev Microbiol 1995; 49: 641–673.

    Article  CAS  PubMed  Google Scholar 

  5. Bishai WR, Graham NM, Harrington S, Pope DS, Hooper N, Astemborski J et al. Molecular and geographic patterns of tuberculosis transmission after 15 years of directly observed therapy. JAMA 1998; 280: 1679–1684.

    Article  CAS  PubMed  Google Scholar 

  6. Barnes PF, Cave MD . Molecular epidemiology of tuberculosis. N Engl J Med 2003; 349: 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM . Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993; 178: 2243–2247.

    Article  CAS  PubMed  Google Scholar 

  8. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR . An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993; 178: 2249–2254.

    Article  CAS  PubMed  Google Scholar 

  9. Lai WC, Pakes SP, Ren K, Lu YS, Bennett M . Therapeutic effect of DNA immunization of genetically susceptible mice infected with virulent Mycoplasma pulmonis. J Immunol 1997; 158: 2513–2516.

    CAS  PubMed  Google Scholar 

  10. Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 1999; 400: 269–271.

    Article  CAS  PubMed  Google Scholar 

  11. Bonato VL, Goncalves ED, Soares EG, Santos Junior RR, Sartori A, Coelho-Castelo AA et al. Immune regulatory effect of pHSP65 DNA therapy in pulmonary tuberculosis: activation of CD8+ cells, interferon-gamma recovery and reduction of lung injury. Immunology 2004; 113: 130–138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ha SJ, Jeon BY, Kim SC, Kim DJ, Song MK, Sung YC et al. Therapeutic effect of DNA vaccines combined with chemotherapy in a latent infection model after aerosol infection of mice with Mycobacterium tuberculosis. Gene Therapy 2003; 10: 1592–1599.

    Article  CAS  PubMed  Google Scholar 

  13. Ha SJ, Jeon BY, Youn JI, Kim SC, Cho SN, Sung YC . Protective effect of DNA vaccine during chemotherapy on reactivation and reinfection of Mycobacterium tuberculosis. Gene Therapy 2005; 12: 634–638.

    Article  CAS  PubMed  Google Scholar 

  14. Silva CL, Bonato VL, Coelho-Castelo AA, De Souza AO, Santos SA, Lima KM et al. Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Therapy 2005; 12: 281–287.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu D, Jiang S, Luo X . Therapeutic effects of Ag85B and MPT64 DNA vaccines in a murine model of Mycobacterium tuberculosis infection. Vaccine 2005; 23: 4619–4624.

    Article  CAS  PubMed  Google Scholar 

  16. Krieg AM . Immune effects and mechanisms of action of CpG motifs. Vaccine 2000; 19: 618–622.

    Article  CAS  PubMed  Google Scholar 

  17. Orme IM, Cooper AM . Cytokine/chemokine cascades in immunity to tuberculosis. Immunol Today 1999; 20: 307–312.

    Article  CAS  PubMed  Google Scholar 

  18. Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, Deck RR et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat Med 1996; 2: 893–898.

    Article  CAS  PubMed  Google Scholar 

  19. Kamath AT, Feng CG, Macdonald M, Briscoe H, Britton WJ . Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis. Infect Immun 1999; 67: 1702–1707.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bandera A, Gori A, Catozzi L, Degli Esposti A, Marchetti G, Molteni C et al. Molecular epidemiology study of exogenous reinfection in an area with a low incidence of tuberculosis. J Clin Microbiol 2001; 39: 2213–2218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. van Rie A, Warren R, Richardson M, Victor TC, Gie RP, Enarson DA et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med 1999; 341: 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  22. Krieg AM, Love-Homan L, Yi AK, Harty JT . CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998; 161: 2428–2434.

    CAS  PubMed  Google Scholar 

  23. Cai H, Tian X, Hu XD, Li SX, Yu DH, Zhu YX . Combined DNA vaccines formulated either in DDA or in saline protect cattle from Mycobacterium bovis infection. Vaccine 2005; 23: 3887–3895.

    Article  CAS  PubMed  Google Scholar 

  24. Cai H, Tian X, Hu XD, Zhuang YH, Zhu YX . Combined DNA vaccines formulated in DDA enhance protective immunity against tuberculosis. DNA Cell Biol 2004; 23: 450–456.

    Article  CAS  PubMed  Google Scholar 

  25. Taylor JL, Turner OC, Basaraba RJ, Belisle JT, Huygen K, Orme IM . Pulmonary necrosis resulting from DNA vaccination against tuberculosis. Infect Immun 2003; 71: 2192–2198.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Skeiky YA, Ovendale PJ, Jen S, Alderson MR, Dillon DC, Smith S et al. T cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. J Immunol 2000; 165: 7140–7149.

    Article  CAS  PubMed  Google Scholar 

  27. Seder RA . The role of IL12 in the regulation of Th1 and Th2 differentiation. Res Immunol 1995; 146: 473–476.

    Article  CAS  PubMed  Google Scholar 

  28. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF . Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 1997; 94: 5243–5248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Cai H, Hu XD, Yu DH, Li SX, Tian X, Zhu YX . Combined DNA vaccine encapsulated in microspheres enhanced protection efficacy against Mycobacterium tuberculosis infection of mice. Vaccine 2005; 23: 4167–4174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 2002AA206411 from the National 863 High Technology Program, the Chinese Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, DH., Hu, XD. & Cai, H. Efficient tuberculosis treatment in mice using chemotherapy and immunotherapy with the combined DNA vaccine encoding Ag85B, MPT-64 and MPT-83. Gene Ther 15, 652–659 (2008). https://doi.org/10.1038/gt.2008.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.13

Keywords

This article is cited by

Search

Quick links