Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Redox proteins thioredoxin 1 and thioredoxin 2 support retinal ganglion cell survival in experimental glaucoma

Abstract

We investigated the neuroprotective effect of thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2) which play critical roles in the regulation of oxidative stress on retinal ganglion cells (RGCs) in a rat glaucoma model. Expression of Trx1 and Trx2 and Trx-interacting protein (Txnip) was observed in the RGC layer (GCL), nerve fiber layer and inner nuclear layer. Txnip-, Trx1- and Trx2-expressing cells in the GCL were primarily colocalized with RGCs. The increased Txnip protein level was observed 2 and 5 weeks after glaucoma induction. Trx1 level decreased 2 weeks after glaucoma induction and more prominently after 5 weeks. No change in Trx2 levels was detected. The effects of Trx1 and Trx2 overexpression on RGC survival were evaluated 5 weeks after glaucoma induction. In nontransfected and EGFP-transfected (used as a negative control) retinas, RGC loss was approximately 27% compared with control. The loss of RGCs in Trx1- and Trx2- transfected retinas was approximately 15 and 17%, respectively. Thus, Trx1 and Trx2 preserved 45 and 37% of cells, respectively that were destined to die in glaucomatous retinas. The results of this study provide evidence for the involvement of oxidative stress in RGC degeneration in experimental glaucoma and point to potential strategies to reduce its impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Quigley HA, Dunkelberger GR, Green WR . Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 1988; 95: 357–363.

    Article  CAS  Google Scholar 

  2. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991; 109: 77–83.

    Article  CAS  Google Scholar 

  3. Glovinsky Y, Quigley HA, Dunkelberger GR . Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1991; 31: 484–491.

    Google Scholar 

  4. Paquet-Durand F, Johnson L, Ekström P . Calpain activity in retinal degeneration. J Neurosci Res 2007; 85: 693–702.

    Article  CAS  Google Scholar 

  5. Wang X, Ng YK, Tay SS . Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. J Neurosci Res 2005; 5: 674–689.

    Article  Google Scholar 

  6. Martin KR, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 10: 4357–4365.

    Article  Google Scholar 

  7. Ishii Y, Kwong JM, Caprioli J . Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 44: 1982–1992.

    Article  Google Scholar 

  8. Tahzib NG, Ransom NL, Reitsamer HA, McKinnon SJ . Alpha-fodrin is cleaved by caspase-3 in a chronic ocular hypertensive (COH) rat model of glaucoma. Brain Res Bull 2004; 6: 491–495.

    Article  Google Scholar 

  9. Haefliger IO, Dettmann E, Liu R, Meyer P, Prünte C, Messerli J et al. Potential role of nitric oxide and endothelin in the pathogenesis of glaucoma. Surv Ophthalmol 1999; 43: S51–S58.

    Article  Google Scholar 

  10. Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA 2001; 98: 3398–3403.

    Article  CAS  Google Scholar 

  11. Di Matteo V, Esposito E . Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord 2003; 2: 95–107.

    Article  CAS  Google Scholar 

  12. Savitt JM, Dawson VL, Dawson TM . Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 2006; 116: 1744–1754.

    Article  CAS  Google Scholar 

  13. Browne SE, Beal MF . Oxidative damage in Huntington's disease pathogenesis. Antioxid Redox Signal 2006; 8: 2061–2073.

    Article  CAS  Google Scholar 

  14. Barber SC, Mead RJ, Shaw PJ . Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 2006; 1762: 1051–1067.

    Article  CAS  Google Scholar 

  15. Chen X, Stern D, Yan SD . Mitochondrial dysfunction and Alzheimer's disease. Curr Alzheimer Res 2006; 3: 515–520.

    Article  CAS  Google Scholar 

  16. Loh KP, Huang SH, De Silva R, Tan BK, Zhu YZ . Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res 2006; 3: 327–337.

    Article  CAS  Google Scholar 

  17. Emerit J, Edeas M, Bricaire F . Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 2004; 58: 39–46.

    Article  CAS  Google Scholar 

  18. Tezel G, Yang X, Cai J . Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Vis Sci 2005; 46: 3177–3187.

    Article  Google Scholar 

  19. Tezel G . Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 2006; 25: 490–513.

    Article  CAS  Google Scholar 

  20. Kumar DM, Agarwal N . Oxidative stress in glaucoma: a burden of evidence. J Glaucoma 2007; 16: 334–343.

    Article  Google Scholar 

  21. Fernandez-Checa JC, Garcia-Ruiz C, Colell A, Morales A, Mari M, Miranda M et al. Oxidative stress: role of mitochondria and protection by glutathione. Biofactors 1998; 8: 7–11.

    Article  CAS  Google Scholar 

  22. Kirkland RA, Franklin JL . Prooxidant effects of NGF withdrawal and MEK inhibition in sympathetic neurons. Antioxid Redox Signal 2003; 5: 635–639.

    Article  CAS  Google Scholar 

  23. Penn JS, Naash MI, Anderson RE . Effect of light history on retinal antioxidants and light damage susceptibility in the rat. Exp Eye Res 1987; 44: 779–788.

    Article  CAS  Google Scholar 

  24. Gauntt CD, Ohira A, Honda O, Kigasawa K, Fujimoto T, Masutani H et al. Mitochondrial induction of adult T cell leukemia derived factor (ADF/hTx) after oxidative stresses in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1994; 35: 2916–2923.

    CAS  PubMed  Google Scholar 

  25. Nishinaka Y, Masutani H, Nakamura H, Yodoi J . Regulatory roles of thioredoxin in oxidative stress-induced cellular responses. Redox Rep 2001; 6: 289–295.

    Article  CAS  Google Scholar 

  26. Nordberg J, Arnér ES . Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001; 31: 1287–1312.

    Article  CAS  Google Scholar 

  27. Vlamis-Gardikas A, Holmgren A . Thioredoxin and glutaredoxin isoforms. Methods Enzymol 2002; 347: 286–296.

    Article  CAS  Google Scholar 

  28. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 1999; 274: 21645–21650.

    Article  CAS  Google Scholar 

  29. Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 2000; 164: 6287–6295.

    Article  CAS  Google Scholar 

  30. Tanito M, Nishiyama A, Tanaka T, Masutani H, Nakamura H, Yodoi J et al. Change of redox status and modulation by thiol replenishment in retinal photooxidative damage. Invest Ophthalmol Vis Sci 2002a; 43: 2392–2400.

    PubMed  Google Scholar 

  31. Tanito M, Masutani H, Nakamura H, Ohira A, Yodoi J . Cytoprotective effect of thioredoxin against retinal photic injury in mice. Invest Ophthalmol Vis Sci 2002b; 43: 1162–1167.

    PubMed  Google Scholar 

  32. Inomata Y, Nakamura H, Tanito M, Teratani A, Kawaji T, Kondo N et al. Thioredoxin inhibits NMDA-induced neurotoxicity in the rat retina. J Neurochem 2006; 98: 372–385.

    Article  CAS  Google Scholar 

  33. Zhou X, Li F, Ge J, Sarkisian Jr SR, Tomita H, Zaharia A et al. Retinal ganglion cell protection by 17-beta-estradiol in a mouse model of inherited glaucoma. Dev Neurobiol 2007; 67: 603–616.

    Article  CAS  Google Scholar 

  34. Moreno MC, Campanelli J, Sande P, Sánez DA, Keller Sarmiento MI, Rosenstein RE . Retinal oxidative stress induced by high intraocular pressure. Free Radic Biol Med 2004; 37: 803–812.

    Article  CAS  Google Scholar 

  35. Nishiyama A, Masutani H, Nakamura H, Nishinaka Y, Yodoi J . Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life 2001; 52: 29–33.

    Article  CAS  Google Scholar 

  36. Yokoyama A, Oshitari T, Negishi H, Dezawa M, Mizota A, Adachi-Usami E . Protection of retinal ganglion cells from ischemia-reperfusion injury by electrically applied Hsp27. Invest Ophthalmol Vis Sci 2001; 42: 3283–3286.

    CAS  PubMed  Google Scholar 

  37. Dezawa M, Takano M, Negishi H, Mo X, Oshitari T, Sawada H . Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron 2002; 33: 1–6.

    Article  CAS  Google Scholar 

  38. Mo X, Yokoyama A, Oshitari T, Negishi H, Dezawa M, Mizota A et al. Rescue of axotomized retinal ganglion cells by BDNF gene electroporation in adult rats. Invest Ophthalmol Vis Sci 2002; 43: 2401–2405.

    PubMed  Google Scholar 

  39. Ishikawa H, Takano M, Matsumoto N, Sawada H, Ide C, Mimura O et al. Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lens-type electrode. Gene Therapy 2005; 12: 289–298.

    Article  CAS  Google Scholar 

  40. Tezel G, Wax MB . Glial modulation of retinal ganglion cell death in glaucoma. J Glaucoma 2003; 12: 63–68.

    Article  Google Scholar 

  41. Masutani H, Ueda S, Yodoi J . The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ 2005; 12: 991–998.

    Article  CAS  Google Scholar 

  42. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998; 17: 2596–2606.

    Article  CAS  Google Scholar 

  43. Fujino G, Noguchi T, Takeda K, Ichijo H . Thioredoxin and protein kinases in redox signaling. Semin Cancer Biol 2006; 16: 427–435.

    Article  CAS  Google Scholar 

  44. Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J . Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 1997; 272: 2936–2941.

    Article  CAS  Google Scholar 

  45. Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 2002; 21: 1695–1703.

    Article  CAS  Google Scholar 

  46. Nonn L, Williams RR, Erickson RP, Powis G . The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol 2003; 23: 916–922.

    Article  CAS  Google Scholar 

  47. Wang D, Masutani H, Oka S, Tanaka T, Yamaguchi-Iwai Y, Nakamura H et al. Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells. J Biol Chem 2006; 281: 7384–7391.

    Article  CAS  Google Scholar 

  48. Jia L, Cepurna WO, Johnson EC, Morrison JC . Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction. Invest Ophthalmol Vis Sci 2000; 41: 3415–3419.

    CAS  PubMed  Google Scholar 

  49. Munemasa Y, Ohtani-Kaneko R, Kitaoka Y, Kumai T, Kitaoka Y, Hayashi Y et al. Pro-apoptotic role of c-Jun in NMDA-induced neurotoxicity in the rat retina. J Neurosci Res 2006; 83: 907–918.

    Article  CAS  Google Scholar 

  50. Piri N, Song M, Kwong JM, Caprioli J . Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration. Brain Res 2007; 1141: 1–9.

    Article  CAS  Google Scholar 

  51. Tanito M, Kwon YW, Kondo N . Cytoprotective effects of geranylgeranylacetone against retinal photooxidative damage. J Neurosci 2005; 25: 2396–2404.

    Article  CAS  Google Scholar 

  52. Munemasa Y, Kim SH, Ahn JH, Kwong JM, Caprioli J, Piri N . Thioredoxins 1 and 2 are neuroprotective in retinal ganglion cells after optic nerve transection and oxidative stress. Invest Ophthalmol Vis Sci 2008; 49: 3535–3543.

    Article  Google Scholar 

  53. Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, Aguayo AJ . Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 1994; 91: 1632–1636.

    Article  CAS  Google Scholar 

  54. Kretz A, Schmeer C, Tausch S, Isenmann S . Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol Dis 2006; 21: 421–430.

    Article  CAS  Google Scholar 

  55. Koeberle PD, Ball AK . Effects of GDNF on retinal ganglion cell survival following axotomy. Vision Res 1998; 38: 1505–1515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We deeply thank Drs J Yodoi and H Masutani for providing Trx expression plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Piri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munemasa, Y., Ahn, J., Kwong, J. et al. Redox proteins thioredoxin 1 and thioredoxin 2 support retinal ganglion cell survival in experimental glaucoma. Gene Ther 16, 17–25 (2009). https://doi.org/10.1038/gt.2008.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.126

Keywords

This article is cited by

Search

Quick links