Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting

Abstract

Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified σ1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the σ1 spike protein. This demonstrates that the C terminus of the σ1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Norman KL, Lee PW . Not all viruses are bad guys: the case for reovirus in cancer therapy. Drug Discov Today 2005; 10: 847–855.

    Article  CAS  Google Scholar 

  2. Forsyth P, Roldan G, George D, Wallace C, Palmer CA, Morris D et al. A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther 2008; 16: 627–632.

    Article  CAS  Google Scholar 

  3. Coffey MC, Strong JE, Forsyth PA, Lee PW . Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282: 1332–1334.

    Article  CAS  Google Scholar 

  4. Etoh T, Himeno Y, Matsumoto T, Aramaki M, Kawano K, Nishizono A et al. Oncolytic viral therapy for human pancreatic cancer cells by reovirus. Clin Cancer Res 2003; 9: 1218–1223.

    CAS  PubMed  Google Scholar 

  5. Kilani RT, Tamimi Y, Hanel EG, Wong KK, Karmali S, Lee PW et al. Selective reovirus killing of bladder cancer in a co-culture spheroid model. Virus Res 2003; 93: 1–12.

    Article  CAS  Google Scholar 

  6. Norman KL, Lee PW . Reovirus as a novel oncolytic agent. J Clin Invest 2000; 105: 1035–1038.

    Article  CAS  Google Scholar 

  7. Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PW . Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci USA 2004; 101: 11099–11104.

    Article  CAS  Google Scholar 

  8. Tyler KL, Fields BN . Mammalian reoviruses. In: Knipe DM, Howely PM (eds). Fields Virology, 4th edn. Lippincott Williams & Wilkins: Philadelphia, 2001, pp 1729–1745.

    Google Scholar 

  9. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ et al. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104: 441–451.

    Article  CAS  Google Scholar 

  10. Barton ES, Connolly JL, Forrest JC, Chappell JD, Dermody TS . Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J Biol Chem 2001; 276: 2200–2211.

    Article  CAS  Google Scholar 

  11. Forrest JC, Campbell JA, Schelling P, Stehle T, Dermody TS . Structure-function analysis of reovirus binding to junctional adhesion molecule 1. Implications for the mechanism of reovirus attachment. J Biol Chem 2003; 278: 48434–48444.

    Article  CAS  Google Scholar 

  12. Lee PW, Leone G . Reovirus protein sigma 1: from cell attachment to protein oligomerization and folding mechanisms. Bioessays 1994; 16: 199–206.

    Article  CAS  Google Scholar 

  13. Danthi P, Hansberger MW, Campbell JA, Forrest JC, Dermody TS . JAM-A-independent, antibody-mediated uptake of reovirus into cells leads to apoptosis. J Virol 2006; 80: 1261–1270.

    Article  CAS  Google Scholar 

  14. Lee PW, Gilmore R . Reovirus cell attachment protein sigma 1: structure–function relationships and biogenesis. Curr Top Microbiol Immunol 1998; 233 (Part 1): 137–153.

    CAS  PubMed  Google Scholar 

  15. Nibert ML, Dermody TS, Fields BN . Structure of the reovirus cell-attachment protein: a model for the domain organization of sigma 1. J Virol 1990; 64: 2976–2989.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Turner DL, Duncan R, Lee PW . Site-directed mutagenesis of the C-terminal portion of reovirus protein sigma 1: evidence for a conformation-dependent receptor binding domain. Virology 1992; 186: 219–227.

    Article  CAS  Google Scholar 

  17. Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickeson SK, Santoro SA, Zutter MM et al. Beta1 integrin mediates internalization of mammalian reovirus. J Virol 2006; 80: 2760–2770.

    Article  CAS  Google Scholar 

  18. Nibert ML, Schiff LA . Reoviruses and their replication. In: Knipe DM, Howely PM (eds). Fields Virology, 4th edn. Lippincott Williams & Wilkins: Philadelphia, 2001, pp 1679–1728.

    Google Scholar 

  19. Roner MR, Steele BG . Localizing the reovirus packaging signals using an engineered m1 and s2 ssRNA. Virology 2007; 358: 89–97.

    Article  CAS  Google Scholar 

  20. Chen D, Zeng CQ, Wentz MJ, Gorziglia M, Estes MK, Ramig RF . Template-dependent, in vitro replication of rotavirus RNA. J Virol 1994; 68: 7030–7039.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Komoto S, Sasaki J, Taniguchi K . Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc Natl Acad Sci USA 2006; 103: 4646–4651.

    Article  CAS  Google Scholar 

  22. Patton JT, Spencer E . Genome replication and packaging of segmented double-stranded RNA viruses. Virology 2000; 277: 217–225.

    Article  CAS  Google Scholar 

  23. Roner MR, Bassett K, Roehr J . Identification of the 5′ sequences required for incorporation of an engineered ssRNA into the Reovirus genome. Virology 2004; 329: 348–360.

    Article  CAS  Google Scholar 

  24. Van Houdt WJ, Smakman N, van den Wollenberg DJM, Hoeben RC, Borel Rinkes IHM, Kranenburg O . Transient infection of freshly isolated human colorectal tumor cells by Reovirus T3D intermediate subviral particles. Cancer Gene Ther 2008; 15: 284–292; doi:10.1038/cgt.2008.2.

    Article  CAS  PubMed  Google Scholar 

  25. Waehler R, Russell SJ, Curiel DT . Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8: 573–587.

    Article  CAS  Google Scholar 

  26. Roner MR, Joklik WK . Reovirus reverse genetics: incorporation of the CAT gene into the reovirus genome. Proc Natl Acad Sci USA 2001; 98: 8036–8041.

    Article  CAS  Google Scholar 

  27. Kobayashi T, Antar AAR, Boehme KW, Danthi P, Eby EA, Guglielmi KM et al. A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 2007; 1: 147–157.

    Article  CAS  Google Scholar 

  28. Wilcox ME, Yang W, Senger D, Rewcastle NB, Morris DG, Brasher PM et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst 2001; 93: 903–912.

    Article  CAS  Google Scholar 

  29. Campbell JA, Schelling P, Wetzel JD, Johnson EM, Forrest JC, Wilson GA et al. Junctional adhesion molecule a serves as a receptor for prototype and field-isolate strains of mammalian reovirus. J Virol 2005; 79: 7967–7978.

    Article  CAS  Google Scholar 

  30. Stehle T, Dermody TS . Structural similarities in the cellular receptors used by adenovirus and reovirus. Viral Immunol 2004; 17: 129–143.

    Article  CAS  Google Scholar 

  31. Lindner P, Bauer K, Krebber A, Nieba L, Kremmer E, Krebber C et al. Specific detection of his-tagged proteins with recombinant anti-His tag scFv-phosphatase or scFv-phage fusions. Biotechniques 1997; 22: 140–149.

    Article  CAS  Google Scholar 

  32. Douglas JT, Miller CR, Kim M, Dmitriev I, Mikheeva G, Krasnykh V et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol 1999; 17: 470–475.

    Article  CAS  Google Scholar 

  33. Cashdollar LW, Chmelo RA, Wiener JR, Joklik WK . Sequences of the S1 genes of the three serotypes of reovirus. Proc Natl Acad Sci USA 1985; 82: 24–28.

    Article  CAS  Google Scholar 

  34. Chappell JD, Barton ES, Smith TH, Baer GS, Duong DT, Nibert ML et al. Cleavage susceptibility of reovirus attachment protein sigma1 during proteolytic disassembly of virions is determined by a sequence polymorphism in the sigma1 neck. J Virol 1998; 72: 8205–8213.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yin P, Keirstead ND, Broering TJ, Arnold MM, Parker JS, Nibert ML et al. Comparisons of the M1 genome segments and encoded mu2 proteins of different reovirus isolates. Virol J 2004; 1: 6.

    Article  Google Scholar 

  36. Castro C, Arnold JJ, Cameron CE . Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res 2005; 107: 141–149.

    Article  CAS  Google Scholar 

  37. Jane-Valbuena J, Nibert ML, Spencer SM, Walker SB, Baker TS, Chen Y et al. Reovirus virion-like particles obtained by recoating infectious subvirion particles with baculovirus-expressed sigma 3 protein: an approach for analyzing sigma 3 functions during virus entry. J Virol 1999; 73: 2963–2973.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vellinga J, Rabelink MJWE, Cramer SJ, van den Wollenberg DJM, Van der Meulen H, Leppard KN et al. Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 2004; 78: 3470–3479.

    Article  CAS  Google Scholar 

  39. Vellinga J, de Vrij J, Myhre S, Uil T, Martineau P, Lindholm L et al. Efficient incorporation of a functional hyper-stable single-chain antibody fragment protein-IX fusion in the adenovirus capsid. Gene Therapy 2007; 14: 664–670.

    Article  CAS  Google Scholar 

  40. Chen D, Patton JT . Rotavirus RNA replication requires a single-stranded 3′ end for efficient minus-strand synthesis. J Virol 1998; 72: 7387–7396.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shmulevitz M, Marcato P, Lee PW . Unshackling the links between reovirus oncolysis, Ras signaling, translational control and cancer. Oncogene 2005; 24: 7720–7728.

    Article  CAS  Google Scholar 

  42. Stehle T, Dermody TS . Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins. Rev Med Virol 2003; 13: 123–132.

    Article  CAS  Google Scholar 

  43. Kobayashi T, Chappell JD, Danthi P, Dermody TS . Gene-specific inhibition of reovirus replication by RNA interference. J Virol 2006; 80: 9053–9063.

    Article  CAS  Google Scholar 

  44. Roy P . Orbiviruses. In: Knipe DM, Howely PM (eds). Fields Virology. Lippincott Williams and Wilkins: Philadelphia, 2001, pp 1835–1869.

    Google Scholar 

  45. Kapikian AZ, Hoshino Y, Chanock RM . Rotaviruses. In: Knipe DM, Howely PM (eds). Fields Virology. Lippincott Williams and Wilkins: Philadelphia, 2001, pp 1787–1833.

    Google Scholar 

  46. Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, van Ormondt H, Hoeben RC et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 1996; 7: 215–222.

    Article  CAS  Google Scholar 

  47. Smakman N, van den Wollenberg DJM, Elias SG, Sasazuki T, Shirasawa S, Hoeben RC et al. KRAS(D13) Promotes apoptosis of human colorectal tumor cells by ReovirusT3D and oxaliplatin but not by tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2006; 66: 5403–5408.

    Article  CAS  Google Scholar 

  48. Vellinga J, Uil TG, de Vrij J, Rabelink MJ, Lindholm L, Hoeben RC . A system for efficient generation of adenovirus protein IX-producing helper cell lines. J Gene Med 2006; 8: 147–154.

    Article  CAS  Google Scholar 

  49. Naik UP, Naik MU, Eckfeld K, Martin-DeLeon P, Spychala J . Characterization and chromosomal localization of JAM-1, a platelet receptor for a stimulatory monoclonal antibody. J Cell Sci 2001; 114 (Part 3): 539–547.

    CAS  PubMed  Google Scholar 

  50. Carlotti F, Bazuine M, Kekarainen T, Seppen J, Pognonec P, Maassen JA et al. Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther 2004; 9: 209–217.

    Article  CAS  Google Scholar 

  51. Virgin HW, Mann MA, Fields BN, Tyler KL . Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action. J Virol 1991; 65: 6772–6781.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Martijn Rabelink and Cynthia Sitaram for their expert technical assistance. We gratefully acknowledge Drs Lee Fradkin, Hans Tanke, Danijella Koppers-Lalic and Twan de Vries for their helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Hoeben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Wollenberg, D., van den Hengel, S., Dautzenberg, I. et al. A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting. Gene Ther 15, 1567–1578 (2008). https://doi.org/10.1038/gt.2008.118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.118

Keywords

This article is cited by

Search

Quick links