Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector

Abstract

An ideal gene therapy vector should enable persistent transgene expression without limitations of safety and reproducibility. Here we report the development of a non-viral episomal plasmid DNA (pDNA) vector that appears to fulfil these criteria. This pDNA vector combines a scaffold/matrix attachment region (S/MAR) with a human liver-specific promoter (α1-antitrypsin (AAT)) in such a way that long-term expression is enabled in murine liver following hydrodynamic injection. Long-term expression is demonstrated by monitoring the longitudinal luciferase expression profile for up to 6 months by means of in situ bioluminescent imaging. All relevant control pDNA constructs expressing luciferase are unable to sustain significant transgene expression beyond 1 week post-administration. We establish that this shutdown of expression is due to promoter methylation. In contrast, the S/MAR element appears to inhibit methylation of the AAT promoter thereby preventing transgene silencing. Although this vector appears to be maintained as an episome throughout, we have no evidence for its establishment as a replicating entity. We conclude that the combination of a mammalian, tissue-specific promoter with the S/MAR element is sufficient to drive long-term episomal pDNA expression of genes in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AAT:

α1-antitrypsin

CMV:

cytomegalovirus

pDNA:

plasmid DNA

S/MAR:

scaffold/matrix attachment region.

References

  1. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  Google Scholar 

  2. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCcormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  3. Themis M, Waddington SN, Schmidt M, von Kalle C, Wang YH, Al-Allaf F et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 2005; 12: 763–771.

    Article  CAS  Google Scholar 

  4. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  Google Scholar 

  5. Al-Dosari M, Zhang G, Knapp JE, Liu D . Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver. Biochem Biophys Res Commun 2006; 339: 673–678.

    Article  CAS  Google Scholar 

  6. Rettig GR, McAnuff M, Liu D, Kim JS, Rice KG . Quantitative bioluminescence imaging of transgene expression in vivo. Anal Biochem 2006; 355: 90–94.

    Article  CAS  Google Scholar 

  7. Wilber A, Frandsen JL, Wangensteen KJ, Ekker SC, Wang X, McIvor RS . Dynamic gene expression after systemic delivery of plasmid DNA as determined by in vivo bioluminescence Imaging. Hum Gene Ther 2005; 16: 1325–1332.

    Article  CAS  Google Scholar 

  8. Zhang G, Budker V, Wolff JA . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735–1737.

    Article  CAS  Google Scholar 

  9. Brooks AR, Harkins RN, Wang PY, Qian HS, Liu PX, Rubanyi GM . Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 2004; 6: 395–404.

    Article  CAS  Google Scholar 

  10. Kramer MG, Barajas M, Razquin N, Berraondo P, Rodrigo M, Wu C et al. In vitro and in vivo comparative study of chimeric liver-specific promoters. Mol Ther 2003; 7: 375–385.

    Article  CAS  Google Scholar 

  11. Gribaudo G, Ravaglia S, Caliendo A, Cavallo R, Gariglio M, Martinotti MG et al. Interferons inhibit onset of murine cytomegalovirus immediate-early gene transcription. Virology 1993; 197: 303–311.

    Article  CAS  Google Scholar 

  12. Alino SF, Crespo A, Dasi F . Long-term therapeutic levels of human alpha-1 antitrypsin in plasma after hydrodynamic injection of nonviral DNA. Gene Therapy 2003; 10: 1672–1679.

    Article  CAS  Google Scholar 

  13. Ehrhardt A, Peng PD, Xu H, Meuse L, Kay MA . Optimization of cis-acting elements for gene expression from nonviral vectors in vivo. Hum Gene Ther 2003; 14: 215–225.

    Article  CAS  Google Scholar 

  14. Bigger BW, Tolmachov O, Collombet JM, Fragkos M, Palaszewski I, Coutelle C . An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 2001; 276: 23018–23027.

    Article  CAS  Google Scholar 

  15. Chen ZY, He CY, Kay MA . Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum Gene Ther 2005; 16: 126–131.

    Article  CAS  Google Scholar 

  16. Darquet AM, Rangara R, Kreiss P, Schwartz B, Naimi S, Delaere P et al. Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Therapy 1999; 6: 209–218.

    Article  CAS  Google Scholar 

  17. Jackson DA, Juranek S, Lipps HJ . Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 2006; 14: 613–626.

    Article  CAS  Google Scholar 

  18. Stoll SM, Sclimenti CR, Baba EJ, Meuse L, Kay MA, Calos MP . Epstein–Barr virus/human vector provides high-level, long-term expression of alpha1-antitrypsin in mice. Mol Ther 2001; 4: 122–129.

    Article  CAS  Google Scholar 

  19. Jenke AC, Stehle IM, Herrmann F, Eisenberger T, Baiker A, Bode J et al. Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci USA 2004; 101: 11322–11327.

    Article  CAS  Google Scholar 

  20. Lufino M, Manservigi R, Wade-Martins R . An S/MAR-based infectious episomal genomic DNA expression vector provides long-term regulated functional complementation of LDLR deficiency. Nucleic Acid Res 2007; 35: 10.

    Article  Google Scholar 

  21. Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ . A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 1999; 27: 426–428.

    Article  CAS  Google Scholar 

  22. Jenke ACW, Scinteie MF, Stehle IM, Lipps HJ . Expression of a transgene encoded on a non-viral episomal vector is not subject to epigenetic silencing by cytosine methylation. Mol Biol Rep 2004; 31: 85–90.

    Article  CAS  Google Scholar 

  23. Jenke BHC, Fetzer CP, Stehle IM, Jonsson F, Fackelmayer FO, Conradt H et al. An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo. EMBO Rep 2002; 3: 349–354.

    Article  CAS  Google Scholar 

  24. Papapetrou EP, Ziros PG, Micheva ID, Zoumbos NC, Athanassiadou A . Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying an S/MAR element. Gene Therapy 2006; 13: 40–51.

    Article  CAS  Google Scholar 

  25. Mearini G, Nielsen PE, Fackelmayer FO . Localization and dynamics of small circular DNA in live mammalian nuclei. Nucleic Acids Res 2004; 32: 2642–2651.

    Article  CAS  Google Scholar 

  26. Kipp M, Gohring F, Ostendorp T, van Drunen CM, van Driel R, Przybylski M et al. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol 2000; 20: 7480–7489.

    Article  CAS  Google Scholar 

  27. Manzini S, Vargiolu A, Stehle IM, Bacci ML, Cerrito MG, Giovannoni R et al. Genetically modified pigs produced with a nonviral episomal vector. Proc Natl Acad Sci USA 2006; 103: 17672–17677.

    Article  CAS  Google Scholar 

  28. Park F, Kay MA . Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol Ther 2001; 4: 164–173.

    Article  CAS  Google Scholar 

  29. Stehle IM, Scinteie MF, Baiker A, Jenke ACW, Lipps HJ . Exploiting a minimal system to study the epigenetic control of DNA replication: the interplay between transcription and replication. Chromosome Res 2003; 11: 413–421.

    Article  CAS  Google Scholar 

  30. Miao CH, Thompson AR, Loeb K, Ye X . Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 2001; 3: 947–957.

    Article  CAS  Google Scholar 

  31. Stehle I, Postberg J, Rupprecht S, Cremer T, Jackson D, Lipps H . Establishment and mitotic stability of an extra-chromosomal mammalian replicon. BMC Cell Biol 2007; 8: 33.

    Article  Google Scholar 

  32. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    Article  CAS  Google Scholar 

  33. Fuks F . DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 2005; 15: 490–495.

    Article  CAS  Google Scholar 

  34. Riu E, Chen Z-Y, Xu H, He C-Y, Kay MA . Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther 2007; 15: 1348–1355.

    Article  CAS  Google Scholar 

  35. Yew NS, Zhao HM, Przybylska M, Wu IH, Tousignant JD, Scheule RK et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 2002; 5: 731–738.

    Article  CAS  Google Scholar 

  36. Hodges BL, Taylor KM, Joseph MF, Bourgeois SA, Scheule RK . Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther 2004; 10: 269–278.

    Article  CAS  Google Scholar 

  37. Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ, Cedar H . DNA methylation represses transcription in vivo. Nat Genet 1999; 22: 203–206.

    Article  CAS  Google Scholar 

  38. Hong K, Sherley J, Lauffenburger DA . Methylation of episomal plasmids as a barrier to transient gene expression via a synthetic delivery vector. Biomol Eng 2001; 18: 185–192.

    Article  CAS  Google Scholar 

  39. Chang AH, Stephan MT, Sadelain M . Stem cell-derived erythroid cells mediate long-term systemic protein delivery. Nat Biotech 2006; 24: 1017–1021.

    Article  CAS  Google Scholar 

  40. Cordier L, Gao GP, Hack AA, McNally EM, Wilson JM, Chirmule N et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther 2001; 12: 205–215.

    Article  CAS  Google Scholar 

  41. Schiedner S, Hertel S, Johnston M, Biermann V, Dries V, Kochanek S . Variables affecting in vivo performance of high-capacity adenovirus vectors. J Virol 2002; 76: 1600–1609.

    Article  CAS  Google Scholar 

  42. Conese M, Auriche C, Ascenzioni F . Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Therapy 2004; 11: 1735–1741.

    Article  CAS  Google Scholar 

  43. Turker MS . Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 2002; 21: 5388–5393.

    Article  CAS  Google Scholar 

  44. Jahner D, Jaenisch R . Retrovirus-induced denovo methylation of flanking host sequences correlates with gene inactivity. Nature 1985; 315: 594–597.

    Article  CAS  Google Scholar 

  45. Millar DS, Paul CL, Molloy PL, Clark SJ . A distinct sequence (ATAAA)n separates methylated and unmethylated domains at the 5′-end of the GSTP1 CpG island. J Biol Chem 2000; 275: 24893–24899.

    Article  CAS  Google Scholar 

  46. Schubeler D, Mielke C, Maass K, Bode J . Scaffold/matrix-attached regions act upon transcription in a context-dependent manner. Biochemistry 1996; 35: 11160–11169.

    Article  CAS  Google Scholar 

  47. Jenke ACW, Eisenberger T, Baiker A, Stehle IM, Wirth S, Lipps HJ . The nonviral episomal replicating vector pEPI-1 allows long-term inhibition of bcr-abl expression by shRNA. Hum Gene Ther 2005; 16: 533–539.

    Article  CAS  Google Scholar 

  48. Loser P, Jennings GS, Strauss M, Sandig V . Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NF kappa B. J Virol 1998; 72: 180–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Charrier S, Stockholm D, Seye K, Opolon P, Taveau M, Gross D et al. A lentiviral vector encoding the human Wiskott–Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice. Gene Therapy 2005; 7: 597–606.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Medical Research Council. SNW is a Philip Gray Fellow of the Katharine Dormandy Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Miller.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyros, O., Wong, S., Niceta, M. et al. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther 15, 1593–1605 (2008). https://doi.org/10.1038/gt.2008.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.113

Keywords

This article is cited by

Search

Quick links