Expanding the phenome and variome of skeletal dysplasia

Article metrics

Abstract

Purpose

To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized.

Methods

Detailed phenotyping and next-generation sequencing (panel and exome).

Results

Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello–Carey syndrome–like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average.

Conclusion

By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3: Clinical features of families with variants in novel candidate genes.
Figure 4
Figure 5: Clinical features of B3GALT6-related phenotypes.

References

  1. 1

    Dolk H, Loane M & Garne EThe prevalence of congenital anomalies in Europe. In: Posada de la Paz M, Groft SC (eds). Rare Diseases Epidemiology. Springer: Dordrecht, The Netherlands, 2010: 349–64.

  2. 2

    Rimoin DL, Cohn D, Krakow D, Wilcox W, Lachman RS & Alanay Y. The skeletal dysplasias. Ann NY Acad Sci 2007;1117:302–9.

  3. 3

    Spranger JW, Brill PW & Poznanski AK. Bone Dysplasias: An Atlas of Genetic Disorders of Skeletal Development. Oxford University Press: New York, 2002.

  4. 4

    Barbosa-Buck CO, Orioli IM, da Graça Dutra M, Lopez-Camelo J, Castilla EE & Cavalcanti DP. Clinical epidemiology of skeletal dysplasias in South America. Am J Med Genet A 2012;158:1038–45.

  5. 5

    Bonafe L, Cormier-Daire V, Hall C et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 2015;167:2869–92.

  6. 6

    Hall CM. International nosology and classification of constitutional disorders of bone (2001). Am J Med Genet A 2002;113:65–77.

  7. 7

    Lazarus S, Zankl A & Duncan E. Next-generation sequencing: a frameshift in skeletal dysplasia gene discovery. Osteoporos Int 2014;25:407–22.

  8. 8

    Group SM. Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol 2015;16:1–14.

  9. 9

    Alkuraya FS. The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum Genet 2013b;132:1197–211.

  10. 10

    Alkuraya FS. Discovery of mutations for Mendelian disorders. Hum Genet 2016;135:615–23.

  11. 11

    Richards S, Aziz N, Bale S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405–23.

  12. 12

    Abouelhoda M, Faquih T, El-Kalioby M & Alkuraya FS. Revisiting the morbid genome of Mendelian disorders. Genome Biol 2016a;17:235.

  13. 13

    Shaheen R, Patel N, Shamseldin H et al. Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic characterization of a large cohort. Genet Med 2015;18:686–95.

  14. 14

    Alkuraya FS. Genetics and genomic medicine in Saudi Arabia. Mol Genet Genomic Med 2014;2:369–78.

  15. 15

    Abouelhoda M, Sobahy T, El-Kalioby M et al. Clinical genomics can facilitate countrywide estimation of autosomal recessive disease burden. Genet Med 2016b;18:1244–9.

  16. 16

    Wang SR, Carmichael H, Andrew SF et al. Large-scale pooled next-generation sequencing of 1077 genes to identify genetic causes of short stature. J Clin Endocrinol Metab 2013;98:E1428–E37.

  17. 17

    Bae J-S, Kim NK, Lee C et al. Comprehensive genetic exploration of skeletal dysplasia using targeted exome sequencing. Genet Med 2016;18:563.

  18. 18

    Patel N, Aldahmesh MA, Alkuraya H et al. Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies. Genet Med 2016;18:554.

  19. 19

    Patel N, Anand D, Monies D et al. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 2017a;136:205–25.

  20. 20

    Shaheen R, Alazami AM, Alshammari MJ et al. Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J Med Genet 2012;49:630–5.

  21. 21

    Anazi S, Maddirevula S, Faqeih E et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry 2017;22:615–24.

  22. 22

    Marini JC, Forlino A, Bachinger HP et al. Osteogenesis imperfecta. Nat Rev Dis Primers 2017;3:17052.

  23. 23

    Alkuraya F. Impact of new genomic tools on the practice of clinical genetics in consanguineous populations: the Saudi experience. Clin Genet 2013a;84:203–8.

  24. 24

    Staal FJ, Luis TC & Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 2008;8:581.

  25. 25

    Willert K, Brown JD, Danenberg E & Duncan AW. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003;423:448.

  26. 26

    Wang Y, Li Y-P, Paulson C et al. Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 2014;19:379.

  27. 27

    Leucht P, Jiang J, Cheng D et al. Wnt3a reestablishes osteogenic capacity to bone grafts from aged animals. J Bone Joint Surg Am 2013;95:1278.

  28. 28

    Faqeih E, Shaheen R & Alkuraya FS. WNT1 mutation with recessive osteogenesis imperfecta and profound neurological phenotype. J Med Genet 2013;50:491–2.

  29. 29

    Sohaskey ML, Jiang Y, Zhao JJ, Mohr A, Roemer F & Harland RM. Osteopotentia regulates osteoblast maturation, bone formation, and skeletal integrity in mice. J Cell Biol 2010;189:511–25.

  30. 30

    Belyaeva OV & Kedishvili NY. Human pancreas protein 2 (PAN2) has a retinal reductase activity and is ubiquitously expressed in human tissues. FEBS Lett 2002;531:489–93.

  31. 31

    Uchida N, Hoshino S-i & Katada T. Identification of a human cytoplasmic poly (A) nuclease complex stimulated by poly (A)-binding protein. J Biol Chem 2004;279:1383–91.

  32. 32

    Shaheen R, Anazi S, Ben-Omran T et al. Mutations in SMG9, encoding an essential component of nonsense-mediated decay machinery, cause a multiple congenital anomaly syndrome in humans and mice. Am J Hum Genet 2016;98:643–52.

  33. 33

    Yan YB. Deadenylation: enzymes, regulation, and functional implications. Wiley Interdiscip Rev RNA 2014;5:421–43.

  34. 34

    Timberlake AT, Furey CG, Choi J et al. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proc Natl Acad Sci USA 2017;114:201709255.

  35. 35

    Bian C, Chen Q & Yu X. The zinc finger proteins ZNF644 and WIZ regulate the G9a/GLP complex for gene repression. Elife 2015;4:e05606.

  36. 36

    Lindroth AM, Larsson C, He L, Ali MA, Pandzic T & Sjöblom T. Loss of DIP2C in RKO cells stimulates changes in DNA methylation and epithelial-mesenchymal transition. BMC Cancer 2017;17:487.

  37. 37

    Patel N, Shamseldin HE, Sakati N et al. GZF1 mutations expand the genetic heterogeneity of Larsen syndrome. Am J Hum Genet 2017b;100:831–6.

  38. 38

    Shamseldin HE, Maddirevula S, Faqeih E et al. Increasing the sensitivity of clinical exome sequencing through improved filtration strategy. Genet Med 2016;19:593–8.

Download references

Acknowledgments

This work was supported by the King Salman Center for Disability Research (F.S.A.), King Abdulaziz City for Science and Technology (13-BIO1113-20, F.S.A.), and the Saudi Human Genome Program (F.S.A.). We also thank the study families for their enthusiastic participation and the Sequencing and Genotyping Core Facilities at King Faisal Specialist Hospital and Research Centre for their technical help.

Author information

Correspondence to Ranad Shaheen PhD or Fowzan S Alkuraya MD.

Ethics declarations

Disclosure

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Keywords

  • craniosynostosis
  • osteogenesis imperfecta
  • Toriello–Carey

Further reading

  • An emerging ribosomopathy affecting the skeleton due to biallelic variations in NEPRO

    • Dhanya L. Narayanan
    • , Anju Shukla
    • , Neethukrishna Kausthubham
    • , Gandham S. Bhavani
    • , Hitesh Shah
    • , Geert Mortier
    •  & Katta M. Girisha

    American Journal of Medical Genetics Part A (2019)

  • The Development of Human Genetics at the National Research Centre, Cairo, Egypt: A Story of 50 Years

    • Samia A. Temtamy

    Annual Review of Genomics and Human Genetics (2019)

  • Mutations in PIGB Cause an Inherited GPI Biosynthesis Defect with an Axonal Neuropathy and Metabolic Abnormality in Severe Cases

    • Yoshiko Murakami
    • , Thi Tuyet Mai Nguyen
    • , Nissan Baratang
    • , Praveen K. Raju
    • , Alexej Knaus
    • , Sian Ellard
    • , Gabriela Jones
    • , Baiba Lace
    • , Justine Rousseau
    • , Norbert Fonya Ajeawung
    • , Atsushi Kamei
    • , Gaku Minase
    • , Manami Akasaka
    • , Nami Araya
    • , Eriko Koshimizu
    • , Jenneke van den Ende
    • , Florian Erger
    • , Janine Altmüller
    • , Zita Krumina
    • , Jurgis Strautmanis
    • , Inna Inashkina
    • , Janis Stavusis
    • , Areeg El-Gharbawy
    • , Jessica Sebastian
    • , Ratna Dua Puri
    • , Samarth Kulshrestha
    • , Ishwar C. Verma
    • , Esther M. Maier
    • , Tobias B. Haack
    • , Anil Israni
    • , Julia Baptista
    • , Adam Gunning
    • , Jill A. Rosenfeld
    • , Pengfei Liu
    • , Marieke Joosten
    • , María Eugenia Rocha
    • , Mais O. Hashem
    • , Hesham M. Aldhalaan
    • , Fowzan S. Alkuraya
    • , Satoko Miyatake
    • , Naomichi Matsumoto
    • , Peter M. Krawitz
    • , Elsa Rossignol
    • , Taroh Kinoshita
    •  & Philippe M. Campeau

    The American Journal of Human Genetics (2019)

  • Autozygome and high throughput confirmation of disease genes candidacy

    • Sateesh Maddirevula
    • , Fatema Alzahrani
    • , Mohammed Al-Owain
    • , Mohammad A. Al Muhaizea
    • , Husam R. Kayyali
    • , Amal AlHashem
    • , Zuhair Rahbeeni
    • , Maha Al-Otaibi
    • , Hamad I. Alzaidan
    • , Ameera Balobaid
    • , Heba Y. El Khashab
    • , Dalal K. Bubshait
    • , Maha Faden
    • , Suad Al Yamani
    • , Omar Dabbagh
    • , Mariam Al-Mureikhi
    • , Abdulla Al Jasser
    • , Hessa S. Alsaif
    • , Iram Alluhaydan
    • , Mohammed Zain Seidahmed
    • , Bashair Hamza Alabbasi
    • , Ibrahim Almogarri
    • , Wesam Kurdi
    • , Hana Akleh
    • , Alya Qari
    • , Saeed M. Al Tala
    • , Suzan Alhomaidi
    • , Amal Y. Kentab
    • , Mustafa A. Salih
    • , Aziza Chedrawi
    • , Seham Alameer
    • , Brahim Tabarki
    • , Hanan E. Shamseldin
    • , Nisha Patel
    • , Niema Ibrahim
    • , Firdous Abdulwahab
    • , Menasria Samira
    • , Ewa Goljan
    • , Mohamed Abouelhoda
    • , Brian F. Meyer
    • , Mais Hashem
    • , Ranad Shaheen
    • , Saad AlShahwan
    • , Majid Alfadhel
    • , Tawfeg Ben-Omran
    • , Mohammad M. Al-Qattan
    • , Dorota Monies
    •  & Fowzan S. Alkuraya

    Genetics in Medicine (2019)

  • Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population

    • Dorota Monies
    • , Mohammed Abouelhoda
    • , Mirna Assoum
    • , Nabil Moghrabi
    • , Rafiullah Rafiullah
    • , Naif Almontashiri
    • , Mohammed Alowain
    • , Hamad Alzaidan
    • , Moeen Alsayed
    • , Shazia Subhani
    • , Edward Cupler
    • , Maha Faden
    • , Amal Alhashem
    • , Alya Qari
    • , Aziza Chedrawi
    • , Hisham Aldhalaan
    • , Wesam Kurdi
    • , Sameena Khan
    • , Zuhair Rahbeeni
    • , Maha Alotaibi
    • , Ewa Goljan
    • , Hadeel Elbardisy
    • , Mohamed ElKalioby
    • , Zeeshan Shah
    • , Hibah Alruwaili
    • , Amal Jaafar
    • , Ranad Albar
    • , Asma Akilan
    • , Hamsa Tayeb
    • , Asma Tahir
    • , Mohammed Fawzy
    • , Mohammed Nasr
    • , Shaza Makki
    • , Abdullah Alfaifi
    • , Hanna Akleh
    • , Suad Yamani
    • , Dalal Bubshait
    • , Mohammed Mahnashi
    • , Talal Basha
    • , Afaf Alsagheir
    • , Musad Abu Khaled
    • , Khalid Alsaleem
    • , Maisoon Almugbel
    • , Manal Badawi
    • , Fahad Bashiri
    • , Saeed Bohlega
    • , Raashida Sulaiman
    • , Ehab Tous
    • , Syed Ahmed
    • , Talal Algoufi
    • , Hamoud Al-Mousa
    • , Emadia Alaki
    • , Susan Alhumaidi
    • , Hadeel Alghamdi
    • , Malak Alghamdi
    • , Ahmed Sahly
    • , Shapar Nahrir
    • , Ali Al-Ahmari
    • , Hisham Alkuraya
    • , Ali Almehaidib
    • , Mohammed Abanemai
    • , Fahad Alsohaibaini
    • , Bandar Alsaud
    • , Rand Arnaout
    • , Ghada M.H. Abdel-Salam
    • , Hasan Aldhekri
    • , Suzan AlKhater
    • , Khalid Alqadi
    • , Essam Alsabban
    • , Turki Alshareef
    • , Khalid Awartani
    • , Hanaa Banjar
    • , Nada Alsahan
    • , Ibraheem Abosoudah
    • , Abdullah Alashwal
    • , Wajeeh Aldekhail
    • , Sami Alhajjar
    • , Sulaiman Al-Mayouf
    • , Abdulaziz Alsemari
    • , Walaa Alshuaibi
    • , Saeed Altala
    • , Abdulhadi Altalhi
    • , Salah Baz
    • , Muddathir Hamad
    • , Tariq Abalkhail
    • , Badi Alenazi
    • , Alya Alkaff
    • , Fahad Almohareb
    • , Fuad Al Mutairi
    • , Mona Alsaleh
    • , Abdullah Alsonbul
    • , Somaya Alzelaye
    • , Shakir Bahzad
    • , Abdulaziz Bin Manee
    • , Ola Jarrad
    • , Neama Meriki
    • , Bassem Albeirouti
    • , Amal Alqasmi
    • , Mohammed AlBalwi
    • , Nawal Makhseed
    • , Saeed Hassan
    • , Isam Salih
    • , Mustafa A. Salih
    • , Marwan Shaheen
    • , Saadeh Sermin
    • , Shamsad Shahrukh
    • , Shahrukh Hashmi
    • , Ayman Shawli
    • , Ameen Tajuddin
    • , Abdullah Tamim
    • , Ahmed Alnahari
    • , Ibrahim Ghemlas
    • , Maged Hussein
    • , Sami Wali
    • , Hatem Murad
    • , Brian F. Meyer
    •  & Fowzan S. Alkuraya

    The American Journal of Human Genetics (2019)