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Purpose: We sought to determine the diagnostic yield of whole-
exome sequencing (WES) combined with phenotype-driven
analysis of variants in patients with suspected genetic disorders.

Methods: WES was performed on a cohort of 51 patients
presenting dysmorphisms with or without neurodevelopmental
disorders of undetermined etiology. For each patient, a clinical
geneticist reviewed the phenotypes and used the phenotype-driven
analysis software PhenoVar (http://phenovar.med.usherbrooke.ca/)
to analyze WES variants. The prioritized list of potential diagnoses
returned was reviewed by the clinical geneticist, who selected
candidate variants to be confirmed by segregation analysis.
Conventional analysis of the individual variants was performed in
parallel. The resulting candidate variants were subsequently
reviewed by the same geneticist, to identify any additional potential
diagnoses.

Results: A molecular diagnosis was identified in 35% of the
patients using the conventional analysis, and 17 of these 18
diagnoses were independently identified using PhenoVar. The only
diagnosis initially missed by PhenoVar was rescued when the
optional “minimal phenotypic cutoff” filter was omitted. PhenoVar
reduced by half the number of potential diagnoses per patient
compared with the conventional analysis.

Conclusion: Phenotype-driven software prioritizes WES variants,
provides an efficient diagnostic aid to clinical geneticists and
laboratories, and should be incorporated in clinical practice.

Genet Med advance online publication 1 February 2018

Key Words: diagnosis; exome; Exomiser; PhenoVar; whole-
exome sequencing (WES)

INTRODUCTION
Genetic disorders represent a significant health burden in
developed countries.1 The incidence of genetic disorders is
estimated at 5.32% in newborns, based on a follow-up period
of 25 years.
In general genetics clinics, the traditional diagnostic studies,

including array comparative genome hybridization, single-
gene or targeted multiple-gene panel sequencing, and
biochemical tests, yield a diagnosis in only 46% of the
cases.2 Phenotypic variability and genetic heterogeneity still
pose significant challenges to obtaining a molecular diagnosis,
particularly for groups of disorders with similar or over-
lapping phenotypes, such as intellectual disability. Gene
panels for a single clinical indication often vary from one
laboratory to another. Adding to this complexity, the number
of genes responsible for human disorders is expanding
steadily every month, as only a fraction (15%) of the known
protein-coding genes in the human genome are associated
with diseases so far.3 Thus, negative results obtained using a
gene panel for a given clinical indication would likely require
the physician to order sequencing of additional genes or

update panels as knowledge evolves. A genomic-based test
(whole-exome or whole-genome sequencing) can overcome
these limitations and potentially increase the molecular
diagnostic yield.
Multiple studies have demonstrated the effectiveness of

exome sequencing to unravel the molecular cause in patients
with suspected genetic disorders. Among these, several studies
addressed the etiologies of neurodevelopmental disorders.
Soden et al.4 sequenced the exome of patients with
neurodevelopmental disorders and found a diagnosis in 45
of 100 families. A large study by Wright et al.,5 aiming to
decipher developmental disorders using trios, yielded a
diagnosis in 27% of cases, of 1,133 children. Yang et al.6

found a molecular diagnosis in 25% of their heterogeneous
cohort of 2,000 patients, but the diagnostic yield increased to
36% when considering only those having a neurologic
disorder. Retterer et al.7 sequenced the exomes of 3,040
patients with suspected genetic disorders and found a
definitive diagnosis in 29% of cases. Diagnostic yield was
shown to vary according to the patient’s phenotype. The
group with the highest diagnostic rate was patients who had
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hearing deficiencies (55%), followed by those who had visual
deficiencies (47%) and the group with musculoskeletal system
involvement (40%).
Routine utilization of exome sequencing in the clinical

setting still faces challenges related to interpretation of a large
number of candidate variants. Once variants of low quality
were removed, Yang et al.6 identified a mean of 875 variants
per patient to be analyzed. To perform the analysis of such
variants, several software programs have been designed. A
small but growing number of bioinformatics tools have been
designed to incorporate the patient’s phenotype in the
algorithm to identify the causal mutation(s), including our
tool, PhenoVar.8 Each of these tools has its own particula-
rities, while they generally share some common features. Most
use the Human Phenotype Ontology (HPO) database.
Exomiser,9 for example, uses the Mouse Phenotype Ontology
and the Zebrafish Phenotype Ontology database in addition to
HPO to link the phenotype to a disease. eXtasy is another tool
that uses HPO to relate the phenotype to a disease.10

However, eXtasy can only perform prioritization on non-
synonymous variants. Another tool used to prioritize variants
is Phevor.11 Besides HPO, it also uses the Mammalian
Phenotype Ontology, the Disease Ontology, and the Gene
Ontology databases, which allows this tool to not be restricted
to known disease-associated genes. Phevor is a Web-based
tool, but does not support the standard VCF format file and
requires VAAST simple files. Other programs rely only on
phenotypic traits (HPO terms) to prioritize certain genes and
do not require any genotypic data, such as Phenolyser12 and
Phenomizer.13 However, it should be noted that an automated
Phenolyzer analysis pipeline has been implemented in the
wANNOVAR server to facilitate its use with sequencing
data.12 Our software, PhenoVar, uses the HPO and OMIM
databases to determine the gene–phenotype and phenotype–
disease correlation, and to prioritize variants.8 It accepts files
in standard VCF format, and includes various variant quality
filters and classification of variants according to predictions of
their pathogenicity, to improve diagnostic performance.
PhenoVar is a Web-based tool usable by clinicians that
focuses on known disease-associated genes.
Here, we report a comparison of the performance of the

phenotype-based tool PhenoVar versus the conventional
analysis of the individual variants identified in a cohort of
patients with suspected genetic disorders.

MATERIALS AND METHODS
Recruitment of the patients
A total of 70 patients with unknown diagnoses, followed in
the genetic clinics at the University Health Center of
Sherbrooke from 2013 to 2016, were proposed for inclusion
in the project (Supplementary Figure S1 online). An expert
committee, composed of two additional and independent
medical geneticists, reviewed each submitted case to evaluate
whether study criteria were met (see Supplementary Figure
S2), and proposed additional genetic testing (single gene or
gene panel) when applicable. Of the 70 patients considered, 9

did not meet the criteria and diagnoses were found for 3
patients following suggested additional testing. Genetic
counseling was then provided to the remaining 58 patients.
Of these, 7 patients (or parents of patients) declined to
participate in the project. We therefore sequenced the exomes
of 51 patients (single unrelated probands): 21 females and 30
males (Table 1). At the time of sequencing, 21 patients were
less than 5 years old, 25 were between 5 and 17 years old, and
5 were aged 18 years or older. All patients had negative or
inconclusive results from previous investigations. These
investigations included comparative genome hybridization
microarray (96%), karyotype (43%), metabolic workup (78%),
single gene or gene panel (84%), imaging (82%), methylation
analysis (33%), fluorescence in situ hybridization (10%), and
other molecular tests for a specific disease (31%). Blood
samples of the patients, the patient’s parents, and their
siblings if applicable, were collected. Patients were followed on
a yearly basis after the exome sequencing was performed, if
results were negative. The study has been approved by the
institutional ethics review board of Université de Sherbrooke
(project 12–167). All participants or their legal tutors
provided written consent.

Exome sequencing
Exome sequencing was performed at the McGill University
and Génome Québec Innovation Centre (Montreal, Canada)
and Fulgent (Temple City, CA). DNA libraries were prepared
for each patient (TruSeq; Illumina), followed by target
enrichment (Agilent SureSelect All Exon kit v4 or v5 or
Illumina Truseq Exome) and sequenced on a HiSeq 2000
(Illumina) with 100-bp paired-end protocol or HiSeq 4000
(Illumina) with 150-bp paired-end protocol. Median coverage
per sample ranged from 86 × to 423 × , with an overall
average coverage of 190 × . All but 2 of the 51 exomes had a
median coverage of more than 100 × .

Table 1 Characteristics of our cohort of patients

Gender

Female 21

Male 30

Age (years old)

o5 21

5–17 25

> 17 5

Previous investigations

Array comparative genome hybridization 49

Karyotype 22

Biochemical tests 40

Gene panel/single gene 43

Imaging 42

Methylation analysis 17

Fluorescence in situ hybridization 16

Other molecular tests 5
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Bioinformatics analyses
We analyzed the sequencing data using a Linux-based
bioinformatics pipeline based on the one developed by the
McGill University and Génome Québec Innovation Centre
(https://bitbucket.org/mugqic/mugqic_pipelines) as pre-
viously described.14 Briefly, (i) raw reads were trimmed using
Trimmomatic15 (version 0.32); (ii) sequence alignment was
performed with Burrows–Wheeler Aligner16 (version 0.7.10);
(iii) genetic variations (single-nucleotide polymorphisms and
indels) were called with haplotypeCaller using the Genome
Analysis Toolkit17 (version 3.2.2) with prior local realign-
ment, base recalibration, and removal of polymerase chain
reaction duplicates using Picard (version 1.123, http://broad
institute.github.io/picard/); (iv) gene annotation was per-
formed with SnpEff/SnpSift18 (version 3.6, including SIFT,
Polyphen2, MutationTaster predictions) with an additional
in-house script to annotate variants present in the ClinVar19

database; and (v) a filtering process removed variations
outside targeted sequences, with population frequency > 1%
(dbSNP 138 and ExAC 0.3 (ref. 20)), genotype quality less
than Q30 or present in three or more local controls sequenced
on the same platform (Figure 1). Coverage depth was
calculated using BED Tools.21

Filtered variant lists obtained from the bioinformatics
pipeline were then interpreted through two parallel
approaches: using our previously described software
PhenoVar8 and using conventional analysis (Figure 1).

Phenotype-driven analysis of variants, using PhenoVar
The conception, algorithm, and use of PhenoVar (http://
phenovar-dev.udes.genap.ca) have been described in detail.8

Briefly, the clinician inputs in PhenoVar the patient’s list of
variants (VCF file format) and selects three phenotypic traits
or more, using the HPO nomenclature. PhenoVar automa-
tically prioritizes diagnoses for validation based on both the
phenotypic and genomic information of a proband. It
calculates a patient-specific diagnostic score for each OMIM
entry with known molecular basis. The diagnostic score
assigned to a given syndrome is the sum of its phenotypic and
genotypic weights, the latter having a larger impact. For each
syndrome listed in the HPO database the phenotypic weight is
determined by calculating the similarity between the proband
and the different patients available in a local database
(Phenobase). Phenobase includes patients simulated using
HPO and real patients. The genotypic weight for each
syndrome corresponds to the highest predicted pathogenicity
of any variant(s) present in the corresponding associated gene
(s). The variants are sorted into three categories that are
assigned a different score (from high to low): (i) known
disease-causing (ClinVar19) and likely pathogenic variants
(e.g., splice-site donor and acceptor, nonsense, frameshift
variants), (ii) variants of uncertain clinical significance (e.g.,
missense, in-frame deletion/insertion), (iii) likely benign and
benign variants (untranslated regions, synonymous or
intronic variants, unless they are reported as pathogenic or
likely pathogenic in ClinVar). The different syndromes are

then ranked according to their diagnostic score. Syndromes
for which the phenotypic score is below a predetermined
cutoff value, and therefore considered unrelated to the
patient’s phenotype, are removed from the list if this
“minimal phenotypic cutoff” option is selected. When there
is no phenotypic trait in common between the patient
investigated and the syndrome definition in the HPO
database, the phenotypic score will usually be below the
minimum phenotypic cutoff value. However, other factors
will also influence the phenotypic score, such as a syndrome’s
phenotypic trait frequencies, the presence of one or more
traits in the patient that have not been reported in the
syndrome, and whether a syndrome is defined by a very large
number of traits.8 This cutoff is the default option that was
used in the present study. The clinical geneticist then reviews
the short list of potential diagnoses and selects candidates for
confirmation by segregation analysis using Sanger sequencing
(parents and additional available relatives when appropriate).
In version 2.0, additional modifications have been incorpo-

rated into the original version of PhenoVar.8 Genes with two
variants of uncertain significance causing recessive disorders
have increased genotypic weight and are thus prioritized on
the list of potential diagnoses. Custom filters enable the user
to filter out variants according to a desired sequencing quality

Exclusion filters :

Population frequencies (>1% ExAC
and local exomes)

Quality (QUAL score < 100, GQ < 30)

Intronic and synonymous variants

Selection of potential diagnoses

PhenoVar : Variants linked to a 
syndrome with an OMIM entry

Genotypic and phenotypic 
analysis by a medical geneticist

Revision of the short list of 
potential diagnostics obtained 

with PhenoVar
n = 15

Conventional 
analysis

Segregation analysis

Manual revision of all 
the listed syndromes

n = 30

n = 3

Figure 1 Schema illustrating the variant filtration steps and the
selection of potential diagnoses between PhenoVar and the
conventional analysis. The numbers shown in small boxes are means.
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score (QUAL and GQ scores), conservation and evolutionary
constraint (PhasConst100way, genomic evolutionary rate
profiling22), or variant frequency cutoffs specific to the
disorder’s mode of inheritance. This last filter uses a
conservative approach when more than one mode of
inheritance is reported, with the highest frequency cutoff
being selected.

Conventional manual analysis of variants
Variants located in genes with known disease associations
according to the OMIM database were first selected from the
VCF file, originating from the McGill University and Génome
Québec Innovation Centre pipeline described above. Then,
single heterozygous variants in recessive genes and variants
with population frequencies above 0.01% in dominant genes
were filtered out. However, single heterozygous variants
found within genes causing recessive disorders and known to
be likely pathogenic or pathogenic in ClinVar or Human
Gene Mutation Database public databases, or predicted to
cause a loss of function, were included in the analysis. Manual
review of read depth was performed for those genes to rule
out deletion/duplication. In addition, missense variants that
were predicted to be tolerated using bioinformatics tools
(SIFT,23 PolyPhen2 (ref. 24), and MutationTaster2 (ref. 25)),
and involving amino acid changes that were not conserved
between species, were filtered out. Variants predicted to cause
loss of function (frameshifts, splice-site donors/acceptors, and
nonsenses) or variants known to be disease-causing (ClinVar
or public Human Gene Mutation Database) were prioritized

in the final list to be reviewed by the clinical geneticist, after
the PhenoVar analysis was completed, in order to select
additional candidates that could have been missed by
PhenoVar.

RESULTS
Whole-exome sequencing was performed on patients with a
suspected genetic disorder, but with unknown diagnosis. Most
of the patients presented with behavioral and cognitive
involvement (84%), a defect in the nervous system with or
without malformations (59%), and/or craniofacial dysmorph-
isms (53%) (Figure 2). On average (mean ± SD), 527 ± 70
rare variants were observed per patient following filtration,
ranging from 412 to 746 variants. Of these, 125 ± 16 variants
(range: 93–170) were present in genes known to be associated
with Mendelian disorders.
Among the 51 patients sequenced, we identified a diagnosis

in 18 using conventional manual analysis, giving a diagnostic
yield of 35%. Putative diagnoses identified are listed in
Table 2. One of these 18 cases (patient EX0014 (ref. 26)) was
negative on the initial analysis in mid-2013, but reanalysis of
the genomic data on follow-up clinic a year later led to the
diagnosis of Schaaf–Yang syndrome, the molecular basis of
which was first reported in late 2013.27 No phenotypes were
associated with a diagnostic yield significantly higher than the
mean of 35%, although some involved systems were
associated with a lower diagnostic yield: renal anomalies
(0%), skin–hair–nails (16%), gastrointestinal system (22%),
and limb anomalies (24%) (Figure 2). Most causal mutations
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Figure 2 Distribution of the overlapping phenotypic terms in the present cohort.
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were inherited, with de novo mutations identified in 7/18
diagnosed patients (39%) (Supplementary Figure S3 and
Table 2).
In comparison to manual analysis, the analysis performed

with the phenotype-driven software independently identified
17 of the 18 diagnoses, one initially being missed with
PhenoVar (case EX0022). The phenotype of this patient
consisted of intrauterine growth restriction with severe
microcephaly, which has been associated with LIG4 defi-
ciency, but this association was first reported only a few
months prior to our exome analysis.28 These phenotypic traits
were not yet incorporated in the HPO database at the time of
analysis. This resulted in a phenotypic score below the
minimal cutoff, and thus LIG4 mutations were classified by
PhenoVar as unrelated to the patient’s phenotype and were
filtered out. Following the manual analysis that uncovered the
diagnosis, we were able to visualize the causative variants in
PhenoVar by deselecting the optional filter that removes
diagnoses not reaching the “minimal phenotypic cutoff”
score. However, this had a significant impact on the number
of diagnoses to review. When the minimal phenotypic cutoff
was selected, only 17 potential diagnoses were listed by
PhenoVar, not including LIG4 syndrome. Deselecting the
cutoff option led to 136 potential diagnoses, but LIG4 was
visualized this time, in eleventh position.
We sought to compare our results with those obtained from

another phenotype-driven software based on the HPO
database, and to investigate whether this limitation could be
overcome by a different algorithm not relying on a minimum
phenotypic cutoff. We decided on Exomiser, because it is
popular, freely available online, and it enabled us to use
directly the VCF file (http://www.sanger.ac.uk/science/tools/
exomiser, accessed January 2017). We limited our analysis to
the first prioritized 100 potential diagnoses listed by
Exomiser. By way of comparison, our manual analysis usually
required the clinician to review about 34 potential diagnoses
per patient (ranging from 26 to 45), while with PhenoVar this
number dropped to 15 on average (ranging from 1 to 26). The
diagnosis of the missed case, EX0022, was not included
among the first 100 diagnoses listed by Exomiser. Further-
more, when we compared the 18 diagnoses made with the
conventional analysis, only 13 of these (72%) were found in
the first 100 diagnoses listed by Exomiser. In addition, 89% of
the 18 diagnoses were found in the top 10 ranks of PhenoVar
whereas only 56% were found in the top 10 ranks of Exomiser
(Figure 3).

DISCUSSION
Several studies have revealed the potential of exome
sequencing by proving that it can help find diagnoses where
other traditional approaches have failed.,6,7,29 In our cohort of
51 patients, most of whom (84%) presented with dysmorph-
isms and/or neurodevelopmental disorders, a total of 18
diagnoses were found, representing a global diagnostic yield
of 35%. All patients had undergone extensive workup prior to
exome sequencing. This high yield is in agreement with other

studies involving cohorts with a large proportion of patients
having neurodevelopmental disorders: Retterer et al.7 and
Soden et al.4 found a molecular diagnosis in 29% and 45% of
their patients, respectively. In addition, the proportion of
diagnosed patients in our study with a dominant de novo
mutation is similar to those studies, with 7 of 18 (39%),
compared with 44% in Retterer et al.’s7 study. We did not
observe particular phenotypes significantly associated with
higher diagnostic yield within our cohort compared with
others.7 This might be related to the relatively small sample
size and to the fact that our cohort was more homogeneous.
The reported diagnostic yield in our study might be

underestimated owing to methodological limitations. On
average, four single heterozygous likely pathogenic or
pathogenic variants were found per patient, in genes known
to cause recessive disorders. Limited sensitivity of next-
generation sequencing deletion/duplication analysis or low
coverage in GC-rich or deep intronic regions might have
prevented the finding of a second mutation to support
causality, and contributed to decreased diagnostic yield. The
large number of missense variations of uncertain significance
also implies the use of bioinformatic predictions on gene
function to balance the amount of time analyzing each case,
but potentially at the expense of decreased clinical sensitivity.
Because exome sequencing identifies a large number of

variations, we hypothesized that phenotype-driven analysis
might facilitate the integration of exome sequencing as a more
routine test in the clinic, by providing an alternative tool that
reduces time of analysis in the laboratory and enables
clinicians to interact directly with genomic data. Indeed,
PhenoVar was able to reduce by about half the number of
potential diagnoses per patient (mean of 15 vs. 34) in
comparison with our manual approach. This decreased

8

8

1
1

1st rank

2nd-10th ranks

Below 10th rank

Not found

5

5
3

5 1st rank

2nd-10th ranks

Below 10th rank

Not found

a

b

Figure 3 Comparison of the diagnoses made with (a) PhenoVar
and (b) Exomiser.
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number of diagnoses implies a twofold reduction in review
time by the clinical geneticist. In addition, PhenoVar can also
decrease the time spent on analyzing the variants before
producing the list of potential diagnoses. This task is
completed in less than 2 min by PhenoVar. In our hands,
this translated to roughly 15 min compared with 90 min per
patient spent in total for the variants analysis and the review
of candidate conditions. Because time spent on variants
analysis may vary significantly from one laboratory to another
according to the staff’s experience, or because of the
incorporation of additional bioinformatic scripts in the
manual analysis, the time savings by the use of PhenoVar
would also be variable. Moreover, reanalysis of negative
exomes puts a burden on laboratories,30 whereas enabling the
clinician to reanalyze the exome data with PhenoVar at the
time of follow-up in the clinic provided the diagnosis for
patient EX0014 (ref. 26).
However, in comparison to the conventional manual

analysis, our phenotype-driven software PhenoVar missed
one diagnosis, which suggested a limitation to phenotype-
driven analysis alone. As shown by our comparison between
PhenoVar and Exomiser, this was not only related to our use
of a phenotypic cutoff, below which disorders are considered
not related to the patient phenotype, because Exomiser also
missed this case. In both cases, this was caused by the absence
of the relevant phenotypic traits in the HPO database.
Phenotype database completeness and accurate choice of
phenotypic trait are both critical; limitations in these aspects
can lead to false negative outcomes in phenotype-driven
analysis.
There is a risk that the phenotype database (in our case

HPO) does not yet contain a particular phenotype linked to a
gene/disorder, and thus it will be ignored or not prioritized
depending on the algorithm used. Although the HPO and
OMIM databases have different frequencies of updates for
adding genes and/or phenotypes, it might take months before
a specific entry is updated following a publication that
redefines the phenotypic spectrum of a genetic condition.
This is not unexpected, given the burden of reviewing the
literature in detail and the high discovery rate of new variants
causing diseases. When updating database entries, the
selection of the appropriate terms is critical and requires
specialized clinical expertise, which is not always readily
available. Phenotype-driven tools such as PhenoVar will likely
need to access a clinical grade phenotypic database to improve
performance. In the case of PhenoVar, the limitation
associated with delayed updates may sometimes be overcome
by deselecting the “minimum phenotypic cutoff.” Diagnoses
with likely pathogenic or known pathogenic variants will be
then prioritized over variants of uncertain significance by the
algorithm, because the genotype has more weight on the final
diagnostic score than does the phenotype. While one could
therefore question the utility of the minimal phenotypic
cutoff, performing an initial analysis omitting the cutoff has
the significant disadvantage of increasing the number of
potential diagnoses listed for manual review. As mentioned

above for LIG4 deficiency, when the minimal phenotypic
cutoff was removed, 136 potential diagnoses were listed
compared with only 17 when this cutoff was in use. Moreover,
in the case of causative missense variants that are classified as
being of uncertain significance because they have not been yet
reported in databases, the correct diagnosis is found at a lower
rank when the minimal phenotypic cutoff is omitted. This is
secondary to the retention of diagnoses unrelated to the
patient’s phenotype but included because of likely pathogenic
or pathogenic variants, which are prioritized over variants of
uncertain significance. However, these will usually represent
carrier states or incidental findings. The strategy adopted by
our laboratory therefore is to perform a second analysis
without the minimum phenotypic cutoff, if the initial analysis
yields negative results, and to examine all disorders caused by
likely pathogenic and known pathogenic variants.
The phenotypic traits or HPO terms chosen by the clinician

are critical in the comparison of the patient against the
phenotypic criteria of the various syndromes included in the
databases or in our case, patient descriptions included in
Phenobase. Our algorithm accepts terms that are closely
related to the actual traits listed in the syndrome definition
(following the HPO nomenclature), but misidentification of
one or more phenotypic traits might lead to failure to
recognize the phenotype as corresponding to the causal
syndrome. It is however possible to retry the analysis with
modifications to the descriptive terms entered and/or with
addition of further phenotypic traits, if the diagnosis is not
identified at the first pass.
Some additional improvements are desirable to facilitate

adoption of phenotype-driven analysis in both laboratories
and clinics. An important potential source of improvement of
PhenoVar’s performance is the possibility to expand the
number of real patients included in Phenobase, which serves
to determine the similarity between a given syndrome and the
tested patient. This would certainly help to better capture the
phenotypic diversity of the syndromes. The PhenoVar
algorithm would then be less reliant on the completeness of
the HPO database, which is currently used to simulate a
minimal number of patients affected by a given syndrome
who are then included in Phenobase. Different strategies
could be used, such as addition of well-described patients
from the literature, or through a collaborative effort of
clinicians using PhenoVar subsequently contributing cases
following confirmation of the correct diagnosis. However,
these approaches might still remain limited. PhenomeCentral,
a collaborative collection of patients (phenotypes and
genotypes), has been used successfully in the research setting
to match patients with potential similar but yet-undefined
conditions.31 The various phenotype-driven software could
certainly benefit from a similar clinical resource but with
patients with known diagnoses. Finally, the Web interface of
PhenoVar has been created to favor utilization by clinicians,
but an adapted version that could be incorporated in
bioinformatic pipelines could help to facilitate adoption by
laboratories. Currently, PhenoVar is compatible with VCF
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produced by Genome Analysis Toolkit and annotated with
SnpEff/SnpSift.
In conclusion, analytic approaches using phenotype-driven

software to prioritize whole-exome sequencing variants
provide an efficient diagnostic aid to clinical geneticists and
laboratories, and should be incorporated in clinical practice.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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