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Purpose: We sought to determine the analytical sensitivity of
several extended exome variation analysis approaches in terms of
their contribution to diagnostic yield and their clinical feasibility.

Methods: We retrospectively analyzed the results of genetic
testing in 1,059 distinct cases referred for exome sequencing to our
institution. In these, we routinely employed extended exome
analysis approaches in addition to basic variant analysis, including
(i) copy-number variation (CNV) detection, (ii) nonconsensus
splice defect detection, (ii) genomic breakpoint detection, (iv)
homozygosity mapping, and (v) mitochondrial variant analysis.

Results: Extended exome analysis approaches assisted in identi-
fication of causative genetic variant in 44 cases, which represented a
4.2% increase in diagnostic yield. The greatest contribution was

associated with CNV analysis (1.8%) and splice variant prediction
(1.2%), and the remaining approaches contributed an additional
1.2%. Analysis of workload has shown that on average nine
additional variants per case had to be interpreted in the extended
analysis.

Conclusion: We show that extended exome analysis approaches
improve the diagnostic yield of heterogeneous genetic disorders and
result in considerable increase of diagnostic yield of exome
sequencing with a minor increase of interpretative workload.
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INTRODUCTION
Next-generation sequencing has significantly facilitated diag-
nostics and novel gene discovery in patients with rare genetic
diseases, especially with the introduction of exome
sequencing.1 Despite this advancement in diagnostics of
genetic diseases, a considerable proportion of cases remain
undiagnosed even after exome sequencing has been per-
formed. Although undiagnosed cases may be attributed to
nongenetic factors or genetic variants outside covered regions,
we hypothesized that a proportion of negative results stem
from limiting exome analysis to basic inspection of single-
nucleotide variations (SNVs) and small insertions or deletions
(indels) in coding regions.
In addition to SNVs in coding regions of the nuclear genome,

genetic diseases may be caused by pathogenic variants in
noncoding regions, structural variants, mitochondrial genome
variants, and several other classes of genetic variation. This is also
evident from data in the ClinVar database, which is currently the
largest resource of disease-associated variation, where such variants
amount to almost a fifth of all genetic variants deposited.2

Typically, exome sequencing data analysis is limited to
detecting and interpreting simple genetic variants in coding

regions of captured genes. Recent reports have shown that the
information content of exome sequencing data exceeds the
proportion currently harnessed in identification of disease-
associated genetic variants.3–6 Furthermore, several methods
for extended analysis of exome sequencing data have been
described in recent years. These include various approaches
for calling copy-number variants (CNVs) in exome sequen-
cing data.7 Breakpoint detection in sites of clusters of soft-
clipped reads has been shown to facilitate both CNV and
chromosomal translocation event detection. Furthermore,
analyzing off-target reads offers the possibility to call
mitochondrial DNA variants in exome sequencing data.8

Finally, high-level analysis of simple variants offers an
improved detection of variants with cryptic splice defects9

and analysis of patterns of homozygosity has been shown
useful in identification of pathogenic variants associated with
recessively inherited diseases.10

The significance of these approaches in routine diagnostic
use has not yet been well characterized. Although studies have
been performed to assess their significance in isolation, there
is no analysis of the comprehensive contribution of employing
these methods in the clinical setting. A further challenge that
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has not been deservingly addressed in previous studies is the
additional interpretive burden introduced by increasing the
numbers of variants in extended exome analysis (EEA).
In the present study we thus aimed to show the collective

benefit of extended methods of exome analysis in diagnosis of
patients with a wide spectrum of genetic diseases affecting
various organ systems. We evaluated the contribution of EEA
to diagnostic yield in 1,059 consecutive cases of rare diseases,
submitted for genetic testing to our institution. Furthermore,
we also estimated the relationship between an increased
diagnostic rate and increased interpretive burden, which
affects the feasibility of these approaches in routine
diagnostic use.

MATERIALS AND METHODS
We analyzed the data for 1,059 consecutive pediatric and
adult cases referred for diagnostic whole-exome and Mende-
liome sequencing to our institution in the period from July
2014 to November 2016. We included a wide variety of
disease categories, with the most common being central
nervous system disorders, neuromuscular disorders, neuro-
developmental disorders, movement disorders, hearing loss,
hereditary cancer syndromes, hereditary cardiac disorders,
myopathies, kidney diseases, and connective tissue disorders.
For a fully detailed list see Supplementary Table 6 online.
Sequencing was performed using a standardized series of

procedures, starting with an in-solution capture of exome
sequences using various capture kits, including TruSight One,
TruSight Exome, and Nextera Coding Exome capture kits (all
manufactured by Illumina, San Diego, CA) or Agilent
SureSelect Human All Exon v2 or Agilent SureSelect Human
All Exon v5 capture kits (both manufactured by Agilent
Technologies, Santa Clara, CA). This was followed by
sequencing on Illumina MiSeq or Illumina HiSeq 2500
platform. Illumina TruSight One panel (Mendeliome sequen-
cing in further text) was used in a majority (93%) of cases.
Since data generated using Mendeliome or whole-exome
sequencing was subsequently analyzed using same proce-
dures, results were not stratified on the basis of the next-
generation sequencing approach. Basic analysis, including
SNV and indel discovery and annotation, was performed
according to Genome Analysis Toolkit Best Practices
workflow.2,11–13 The strategy for exome data interpretation
was primarily based on the combined disease and phenotype
gene target definition approach we previously described.14 For
a detailed description of analytical procedures employed in
basic analysis of exome sequencing data, see Supplementary
Materials and Methods.
Furthermore, we employed the following approaches to

expand the spectrum of genetic variation detected and
improve identification of causative genetic variants: (i) CNV
analysis, (ii) breakpoint detection, (ii) mitochondrial sequence
analysis, (iv) detection of noncanonical splice site variants,
and (v) identification of long runs of homozygosity.
Only the variants classified as pathogenic or likely

pathogenic were considered in estimating positive yield, while

the variants of uncertain significance (VUS) were not
considered. As an essential interpretive step of the diagnostic
process, all the results were evaluated by a medical doctor who
specialized in interpretation of exome sequencing data,
followed by evaluation by a clinical geneticist prior to
reporting. In all cases, patients were seen by a clinical
geneticist prior to exome sequencing diagnostics and the
reported variants were clinically evaluated and discussed with
them prior to reporting. We only considered and reported
variants if they were classified as likely diagnostic findings and
if they were compatible with the clinical presentation of
referral. The brief methodological details of each utilized
method are outlined in the separate sections below; for a fully
detailed description of implemented methods see
Supplementary Materials and Methods.

EEA methods
Details of the methods employed for EEA are available in the
Supplementary Methods (sections 2.1 to 2.5). Briefly, we
implemented CoNIFER software for detection of CNVs.
Secondly, we searched for the presence of breakpoints by
detecting clusters of soft-clipped reads in aligned exome
sequencing data. Thirdly, to detect mitochondrial variants we
reconstructed the mitochondrial sequence from off-target
reads mapping to the mitochondrial genome. Next, we used
precomputed splice effect predictions in the dbscSNV
database to identify variants in noncanonical splice regions.
Finally, we developed an in-house approach for detecting long
runs of homozygosity and validated the regions using the
HomozygosityMapper tool (www.homozygositymapper.com).

Diagnostic yield of EEA approaches
Firstly, we compared the increase of diagnostic yield for each
EEA method in isolation. We then determined the collective
contribution of all used methods in increasing the diagnostic
yield. We counted as the added diagnostic yield all those cases
where the EEA methods detected a pathogenic or likely
pathogenic variant that would not have been detected by basic
exome analysis approaches.

Assessment of the interpretation workload in EEA
We evaluated the anticipated increase in interpretation
workload resulting from the increased number of variants,
generated by EEA. For sake of comparison across different
methods, we measured the number of variants that have to be
surveyed for each clinically relevant finding for basic and EEA
approaches. We expressed this as the ratio between cases
solved and the number of variants interpreted. We termed
this metric “interpretations per solved case.” The difference of
this ratio between basic approach and EEA reflected the
additional workload (number of variants to be interpreted)
that has to be invested for the increase in diagnostic yield
(number of causative variants identified). This metric allowed
for comparable assessment of workload increase across
different exome analysis approaches used for interpretation
of exome data.
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RESULTS
In the present study we surveyed the increase in diagnostic
yield when using EEA methods in 1,059 cases referred for
exome sequencing at our institution. Analysis using the basic
exome analysis for detection of simple genetic variants in
coding regions of the exome identified a likely genetic cause in
402 cases, representing a baseline diagnostic yield of 38.0%.
Using EEA, we established a diagnosis in a further 44 cases,
increasing the diagnostic yield by 4.2% to an overall 42.2%.
The breakdown of results for each EEA category is presented
in the sections below (Figure 1). Also shown below are four
examples of visual representations of diagnostic finds for
several EEA approaches (Figure 2). A summary and overview
of reported variants found using EEA are shown in Table 1.
Detailed figures of variants and clinical data of patients are
presented in Supplementary Tables 1–5 and the Supple-
mentary Figures.

CNV analysis
Using CNV analysis we identified a likely genetic cause in 19
cases (Table 1), which contributed a 1.8% increase to the total
diagnostic yield.
On average, we identified 1.6 CNVs in each patient’s exome

(SD = 3.0), which included common and rare structural
variants. The number of detected CNVs was mostly affected
by target capture protocol, sequencing coverage, and quality
of input DNA samples. As expected, we observed over twice
as many duplication events (69.2%) as deletions (30.8%).
On average, the size of called CNVs was within 1 Mb range,

with mean size of 442 kb (SD = 955 kb). The majority of
observed CNVs were smaller than 1Mb (88.3%) with 1.3%
ultimately reported as causative. The remaining larger CNVs

(>1Mb) represented 11.7% of detected CNVs and were more
often reported as causative (8.3%).
Of the reported CNVs, we identified major structural

variants in two cases, specific microdeletions or microdupli-
cations in eight cases, and intragenic deletions in nine cases.
All the identified CNVs were considered to be diagnostic; the
major structural rearrangements, microdeletions, and micro-
duplications identified could be attributed to well-established
structural variation syndromes that aligned with the clinical
presentation of referral. Furthermore, all the intragenic
deletions and duplications were identified in genes with
compatible phenotypic consequences and where exonic
deletions and duplications were an established pathogenic
mechanism.
In all reported cases, we confirmed the presence of the

variants using either array-based comparative genomic
hybridization, multiplex ligation-dependent probe amplifica-
tion, or specific polymerase chain reaction–based approaches.
Additionally, we identified VUS in an additional three cases.
A detailed list of all reported variants along with their

coordinates can be found in Supplementary Table 1.

Breakpoint analysis
Breakpoint analysis has revealed genetic cause in four cases
(Table 1), which represented a 0.4% increase in diagnostic
yield. Specifically these cases included an upstream deletion of
VHL gene in a patient with suspected Von Hippel–Lindau
syndrome, a hemizygous intragenic deletion of UPF3B gene in
a patient with autism, and an HBB gene deletion in a patient
with porphyria and thalassemia minor. In all cases revealed by
breakpoint analysis, the deletion event occurred in the exonic
region but was too small to be detected using the CNV
detection algorithm employed.
Filtering out the breakpoint variants with frequency over

1% has reduced the average number of suspect breakpoint
detections to the average of 1.9 per each case (SD = 4.1).

Mitochondrial sequence analysis
Routine analysis of mitochondrial sequence variation has
revealed causative mitochondrial variants in three cases
(Table 1), contributing 0.3% to the overall diagnostic yield
in our population. Of the identified mitochondrial variants, all
were tracked as previously reported pathogenic variants in the
MITOMAP database. In one case, causative variant was
detected in homoplasmy, while in two cases we detected the
variant in heteroplasmy, with minimum of 22% heteroplasmy
detected in one case.
We observed the average mitochondrial coverage of 51.7

with SD of 78.3 (Supplementary Figure 35). Only a minor
proportion of samples had median mitochondrial coverage
below 15 (21.2% of cases) and thus we were able to call
mitochondrial sequence variants in a majority of cases. The
factor most consistently affecting mitochondrial coverage was
source tissue for DNA extraction, where highest coverage was
observed for DNA samples isolated from muscle tissue in

38.0%

57.8%

Breakpoint analysis

Copy number analysis

Homozygosity mapping

Mitochondrial variants

Nonconsensus splice detection 
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results

Positive
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Figure 1 Impact of extended methods of exome analysis on
diagnostic yield. Altogether, methods of extended exome analysis
identified the causative variant in 4.2% of cases. The contribution of
each method is also presented as a proportion of samples where
diagnosis was reached using a specific method.
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contrast to lower coverage for samples isolated from
peripheral blood (see Supplementary Figure 35).
Additionally, VUS was identified in one case. On average,

3.9 variants per case passed the quality and population
frequency filters (SD = 3.0) and were thus considered in the
interpretation.

Noncanonical splice variant detection
Predictions of splice effect in the sequences extending
consensus ± 1 and ± 2 made possible identification of causa-
tive genetic variants in further 13 cases (Table 1), contri-
buting 1.2% to the final yield. Interestingly, in majority
nonconsensus splicing variants were detected at positions +4
and +5 (63.6% splice variants), with other splice defects
detected at positions − 3, − 12, and two synonymous variants
were predicted to affect splicing.
VUS were identified in two cases. On average, we reviewed

1.7 variants per case (SD = 1.6).

Identification of long runs of homozygosity
Homozygosity mapping assisted the discovery of causative
variants in five cases in our cohort (Table 1), contributing
0.4% to a total diagnostic yield. In most cases homozygosity
mapping assisted in narrowing down the set of candidate
genes, after no cause was identified using the conventional

approach. An example of these results is the identification of
homozygous single-exon deletion in the DYM gene in a
patient with short stature and developmental delay. Here, we
performed a targeted survey of clinically compatible genes
after identification of a block of homozygosity on chromo-
some 18 (Supplementary Figure 30) and targeted evaluation
of the coverage profile revealed the presence of the deletion,
which was not observed with CNV detection algorithm. In
one case, we identified causative point variants in a gene that
not captured with Mendeliome sequencing (GMPPB gene),
and in two cases this approach precipitated variants in novel
genes that were only later discovered as associated with the
referral clinical condition (GLDN and STAG3 genes).
On average, we reviewed 0.25 variants per case (SD = 0.7).

Assessment of the interpretation workload in EEA
In basic exome analysis, 91 simple coding variants were
reviewed per case. Considering the diagnostic yield of 38.0%,
this meant that in terms of workload, 239 variants had to be
interpreted to reach a diagnostic finding in basic exome
analyses (Figure 3).
Using the same metric, we assessed the workload incurred

by the EEA approaches (raw data available in Supplementary
Table 7). On average, all the extended exome approaches
cumulatively added 9.4 variants to be additionally interpreted
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Figure 2 Representation of results in extended exome analysis. (a) Typical output of CoNIFER software, which represents a multiexonic deletion
in a patient with neonatal form of Marfan syndrome. (b) Appearance of a typical breakpoint profile with the proximal and distal cluster of soft-clipped
reads at the edges of a small deletion in the upstream region of the VHL gene, which was not detected using either basic exome analysis or copy-
number variant (CNV) analysis. (c) An example of a heteroplasmic mitochondrial variant identified in a patient with stroke and cognitive decline. The
ratio between reference and alternative read numbers also allowed for an approximation of the heteroplasmy levels. (d) Profile of homozygosity in a
patient with undefined muscular dystrophy and a block on chromosome 3, which was ultimately revealed to harbor homozygous GMPPB pathogenic
variant. The variant was not previously detected and was only detected after targeted Sanger sequencing of the gene (due to the GMPPB gene, which
would otherwise not be captured on the Mendeliome panel). The plot was generated using the HomozygosityMapper tool, as described in Materials
and Methods.
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Table 1 Variants identified using EEA methods
Patient ID Referral diagnosis EEA method Validated causative variant Genes

P0083 Global developmental delay, epilepsy, inability to speak,

sunken nasal bridge

CNV analysis arr[hg19] Xq28(153,129,811–153,630,671)x2 17 genes including MECP2

P0119 Suspected Lujan–Fryns syndrome CNV analysis arr[hg19] 7q11.22(70,232,987–70,257,820)x1 AUTS2

P0175 Undefined neurodevelopmental disorder CNV analysis arr[hg19] 19p13.12p13.11(14,802,282–16,652,245)x1 43 genes

P0189 Ocular albinism CNV analysis exome[hg19] 15q13.1(28,096,517–28,327,030) OCA2

P0242 Intellectual disability, polygyria CNV analysis arr[hg19] chr2p25.3(30,341–2,908,831)x1 9 genes including MYT1L

P0312 Intellectual delay, motor delay, facial dysmorphism CNV analysis exome[hg10] Xq28(153,167,974–153,363,132) exome

[hg10] Xq28(153,581,911–153,760,505)

22 genes including MECP2

P0371 Suspected X-linked developmental delay. CNV analysis arr[hg19] 1q22q23.1(155,162,566–157,670,289)x1 67 genes

P0377 Sandhoff disease CNV analysis arr[hg19] 5q13.3(73,981,082–73,992,976)x0 HEXB

P0405 Myopathy—unspecified CNV analysis arr[hg19] 22q11.21(18,706,001–21,561,514)x3 45 genes

P0600 Syndromic progressive cardiomyopathy CNV analysis arr[hg19] 3q26.31q26.32(173,525,459–176,767,936)

x1, arr[hg19] 3q26.32q27.2(176,771,550–

185,226,675)x3, arr[hg19] 3q28q29(188,477,890–

195,296,016)x1

3 genes in the proximal deletion, 56 genes in

duplication, and 31 genes in the distal

deletion (all on chromosome 3)

P0642 Suspected neonatal Marfan syndrome CNV analysis arr[hg19] 15q21.21(48,760,124–48,789,598)x1 FBN1

P0815 Global developmental delay, hypotonia, macrocephaly,

behavior disorders

CNV analysis arr[hg19] 1q22(155,957,128–156,126,930)x1 LMNA, RAB25, MEX3A, SEMA4A,

LAMTOR2, SSR2, UBQLN4

P0816 Developmental delay, hypotonia CNV analysis arr[hg19] 12p13.33(311,657–1,456,832)x1 9 genes

P0880 Suspected Lynch syndrome, endometrial carcinoma,

colorectal carcinoma, colorectal carcinoma (daughter),

endometrial carcinoma (sister)

CNV analysis exome[hg19] 2p21p16.3(47,168,700–47,657,090)x1 5 genes including MSH2 and EPCAM

P0910 Joint hypermobility, hypotonia CNV analysis exome[hg19] 1p36.22(12,016,963–12,027,158) PLOD1

P0949 Marfan syndrome CNV analysis arr[hg19] 15q13.2q13.3(30,954,726–32,509,926)x3 7 genes

P1025 Erythropoietic protoporphyria, thalassemia minor CNV analysis arr[hg19] 11p15.4(5,241,108–5,254,510)x1 HBB, HBD

P1050 Polymalformative syndrome CNV analysis arr[hg19] 16p13.11p11.2(14,145,698–29,331,350)x3 117 genes

arr[hg19] Xq21.2q27.3(80,977,681–144,853,235)x3 261 genes

P1128 Developmental delay, suspected congenital disorder of

glycosylation

CNV analysis arr[hg19] chr6q25.3(156,922,572–157,159,419)x3 Complex rearrangement involving ARID1B

arr[hg19] chr6q25.3(157,341,859–157,870,814)x3

P0921 Periventricular nodal heterotopia, epilepsy Breakpoint

detection

arr[hg19] Xq28(153,473,833–153,588,359)x1 Complex rearrangement involving FLNA gene

arr[hg19] Xq28(153,588,359–153,611,490)x3

P0929 Suspected Von Hippel–Lindau syndrome Breakpoint

detection

exome[hg19] 3p25.3(10,175,483–10,183,579) VHL

P0953 Childhood autism Breakpoint

detection

arr[hg19] Xq24(118,985,732–118,986,305)x0 UPF3B

P0955 Porphyria, beta thalassemia minor Breakpoint

detection

exome[hg19] 11p15.4(5,247,858–5,255,271) HBD, HBB
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Table 1 Continued

Patient ID Referral diagnosis EEA method Validated causative variant Genes

P0597 Suspected Leigh disease mtDNA analysis chrM:8993T>G (rs199476133) MT-ATP6

P0791 Suspected MELAS syndrome mtDNA analysis chrM:3243A>G (rs199474657) MT-TL1

P0918 Leber’s hereditary optic neuropathy mtDNA analysis chrM:14,598T>C MT-ND6

P0203 Tuberous sclerosis NCSplice detection NM_000548.3:c.5160+4A>C (htz) TSC2

P0240 Suspected Marfan syndrome NCSplice detection NM_000138.4:c.5788+5G>A (htz) FBN1

P0270 Suspected connective tissue disorder NCSplice detection NM_000093.4:c.1389G>A (htz) COL5A1

P0315 Suspected connective tissue disorder NCSplice detection NM_001110556.1:c.7023+4A> T (htz) FLNA

P0569 Overlapping osteogenesis imperfecta and Ehlers–Danlos

syndrome features

NCSplice detection NM_000089.3:c.432+5G>A (htz) COL1A2

P0657 Connective tissue disease, cardiac valvular disease NCSplice detection NM_016955.3:c.388+5G>A (htz) SEPSECS

P0843 Congenital insensitivity to pain NCSplice detection NM_002977.3:c.377+5C> T (htz) SCN9A

NM_002977.3:c.1642C> T (htz) SCN9A

P0986 Suspected neurofibromatosis type 1 NCSplice detection NM_001042492.2:c.2252-3T>G (htz) NF1

P1003 Netherton syndrome NCSplice detection NM_001127698.1:c.891CoT (htz) SPINK5

NM_001127698.1:c.1431-12G>A (htz)

P1076 Suspected Bardet–Biedl syndrome NCSplice detection NM_144596.2:c.489G>A (hmz) TTC8

P1080 Progeria NCSplice detection NM_170707.3:c.1968+5G>A (htz) LMNA

P1086 Suspected Myoshi myopathy NCSplice detection NM_000070.2:c.632+5G>A (htz) CAPN3

NM_000070.2:c.550delA (htz)

P1087 Suspected Meckel–Gruber syndrome NCSplice detection NM_025114.3:c.5710-3C>G (htz) CEP290

NM_025114.3:c.4882C> T (htz) CEP290

P0006 Skeletal dysplasia with mental retardation Homozygosity

mapping

exome[hg19] 18q21.1(46,690,043–46,690,177) DYM

(EX14 DEL)

P0447 Premature ovarian failure Homozygosity

mapping

NM_012447.2:c.2776C> T (hmz) STAG3

P0567 Severe neurological deterioration, developmental

regression, leukodystrophic brain alterations

Homozygosity

mapping

NM_001135659.1:c.869del (hmz) NRXN1

P0811 Congenital contractures, breathing difficulties at birth Homozygosity

mapping

NM_181789.2:c.1305G>A (hmz) GLDN

P1052 Limb-girdle muscular dystrophy Homozygosity

mapping

NM_013334.3:c.458C> T (hmz) GMPPB

CNV, copy-number variation; EEA, extended exome analysis; MELAS, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; mtDNA, mitochondrial DNA; NCSplice, noncanonical splice site.
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in each case. The best variants interpreted per solved case
ratio was obtained for CNV analysis, nonconsensus splice site
prediction, and homozygosity mapping approaches in which
50 to 140 additional variants had to be inspected to diagnose
an additional patient (Figure 3). The ratios were less favorable
for breakpoint detection and mitochondrial sequence analysis,
where an additional 513 and 1,264 variants had to be reviewed
to diagnose an additional case, respectively (Figure 3).
Expectedly, we observed a favorable impact of aggregating

EEA variants in a local database on the number of variants
that have to be manually evaluated. Similarly to SNVs
(Figure 4), we expected that this beneficial effect would also
be observed for other types of genetic variants. As an example,
the CoNIFER software used for CNV detection inherently
filters out common CNVs as the number of analyzed cases

increases. In line with this, we noted that the number of
CNVs was reduced from an average of 30 per sample in the
beginning of the implementation to an average of three per
sample, when all the collected data was included in the
CoNIFER analysis. Similarly, we constructed an in-house
database of breakpoints and removed those that occurred in
over 1% of samples from further analyses. The implementa-
tion of the in-house breakpoint database resulted in reducing
the number of breakpoints for interpretation from an average
of 100 to 30 breakpoints per sample (Figure 3). The integra-
tion of databases of locally common variants collected
in-house into the EEA algorithm thus appeared to facilitate
the interpretation of clinically relevant findings by signifi-
cantly reducing the number of variants to be interpreted.

DISCUSSION
In the present study, we have shown that comprehensive
utilization of the presented approaches increased diagnostic
yield from 38.0% to 42.2% in the sample set of 1,059 cases.
Among the EEA approaches used, we found that CNV
detection and nonconsensus splice site prediction contributed
most towards the increase of diagnostic yield. Our analysis of
impact on workload due to additional variants of EEA has
shown a favorable workload-to-yield relationship, demon-
strating the feasibility of introducing them in daily routine
use.
Although exome sequencing has significantly improved

diagnosis of rare genetic conditions, a significant proportion
of the cases with likely genetic etiology remain undiagnosed
even after exome sequencing.14 While part of these cases likely
remain undiagnosed due to having pathogenic variants in
noncoding or noncovered regions, we show that a consider-
able proportion of undiagnosed cases may be attributed to
limited analysis in current routine exome diagnostics (4.2%).
It has been shown that numerous types of variation in
addition to currently analyzed variants can be detected in
exome sequencing data, but only a few studies have system-
atically surveyed the proportion of cases where these extended
analyses may be of benefit.8 In the present study, we
characterized the improvement in diagnostic yield due to
systematic use of these approaches and delineated their
relative contribution. We have shown that CNV analysis and
nonconsensus splice site analysis contributed most to the
diagnostic yield, while other approaches contributed to a
lesser extent.
It is challenging to anticipate the mutational mechanism

underlying a suspected genetic condition in patients. This
often results in prolonged diagnostic process and use of
multiple genetic tests in consecution, before a conclusive
diagnosis is reached. This is evidently reflected in our results,
where we identified a considerable proportion of causative
CNVs (1.8%) and mitochondrial variants (0.3%) in cases
where variants in nuclear DNA were initially considered a
primary cause of the disease. One notable example was a
case with predominant presentation of hypotonia and motor
delay, which was suspected to be a monogenic myopathy.
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Figure 3 This figure presents an added variant number in each
case and the anticipated workload due to additional variants in
using extended exome analyses. (a) The upper panel shows the
increase in the variant number with the addition of extended exome
analysis approaches. The number of these additional variants for
evaluation was minor in comparison to the number of variants evaluated
in basic exome analysis (on average, nine additional variants had to be
considered per case in the full extended exome analysis). (b) The bottom
panel shows the assessment of workload increase with introduction of
extended exome analysis approaches. To quantify workload, we used the
ratio between the number of variants interpreted and cases solved. This
ratio effectively reflected the number of variants that have to be
interpreted to reach diagnosis in one additional case. While the basic
exome analysis had an average ratio of 239 variants per solved case, the
combination of CNV analysis, splice analysis, and homozygosity mapping
cumulatively had a comparable ratio of 277 interpreted variants per
solved case. The ratio was less beneficial for breakpoint analysis as well
as mitochondrial variation, likely because several mitochondrial variants
were found in each patient, but they were only rarely considered for
reporting.

Extended exome data analysis in diagnostics of rare diseases | BERGANT et al ORIGINAL RESEARCH ARTICLE

GENETICS in MEDICINE | Volume 20 | Number 3 | March 2018 309



This patient was thus referred to exome sequencing and
no causative sequence variants could be identified. EEA,
however, revealed that the patient carried a likely causative
22q11.2 duplication, which may manifest predominantly with
severe muscle hypotonia in cases at the extreme spectrum
(patient 0405, Supplementary Figure 10). This case illustrates
an example where the mutational mechanism could not have
been anticipated and where the diagnosis has been reclassified
after the results of our survey. Without EEA such cases
would likely remain undiagnosed or would require further

genetic testing to exclude the possibility of nonsequence
genetic variants. Considering the comprehensive nature of
exome sequencing, expansion of its scope in terms of
detectable mutational mechanisms further strengthens its
utility in daily diagnostic practice and contributes to earlier
conclusive diagnosis. Furthermore, this expanded scope
further reaffirms earlier prioritization of exome sequencing
among other diagnostic approaches.
Although some recent studies have evaluated the utility of

EEA approaches, most of these surveys were predominantly
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focused on the technical aspects of variant detection and most
were focused on detection of CNVs. Most recently, Pfundt
and colleagues evaluated the impact of CNV detection on the
diagnostic yield of exome sequencing in the clinical setting.15

Interestingly, they could demonstrate a 2.0% increase in
diagnostic yield, which is in agreement with our results of
1.8% increase of diagnostic yield with CNV analysis alone.
Our results show, however, that the comprehensive use of
EEA considerably improves this yield, ultimately reaching an
overall 4.2%. To our knowledge, no studies on clinical use of
other EEA approaches or their combined use have been
published to date.
Interpretation of exome sequencing data involves signifi-

cant expertise and time input to reach conclusive and
clinically useful information. This includes balancing the
load of information on one hand, with the possibility of
missing or not reporting a medically relevant finding on the
other. Expectedly, EEA approaches identified causative
findings in considerably fewer cases in comparison to basic
exome analysis. One may consider the use of EEA appro-
aches prudent if the amount of work invested in the
interpretation would result in a proportional increase in
diagnostic yield. For this reason, we also systematically
estimated the feasibility of routine use of EEA in terms of
its impact on workload increase. We determined that CNV
analysis, splice site variant analysis, and homozygosity
mapping approaches had a highly favorable workload-to-
yield ratio. On average, the cumulative workload-to-yield
ratio for these three approaches was comparable (277
interpreted variants per solved case) to basic exome analysis
(239 interpreted variants per solved case). A key element in
reaching this efficiency was the establishment of databases of
EEA findings with the aim to improve separation of
pathologic from common genetic variants and technical
artifacts. We observed a consistent decrease of the interpreted
variants during initial stages of collecting the first few
hundreds of cases. This decline reached a plateau after 500
cases were input into our database.
Introduction of additional variant types in exome inter-

pretation may increase the rate at which VUS and incidental
findings are identified. In our study population, the rate of
VUS findings increased only minimally after the introduction
of EEA, with six VUS identified in addition to 93 reported in
basic exome analysis (raising the VUS rate from 8.8% to
9.3%). We did not identify any findings that could be
classified as incidental findings in our group, despite a
relatively large sample taken into consideration. It is likely
that introduction of EEA in routine analysis pipelines only
marginally increases the rates of VUS and incidental findings.
Although diagnostic whole-genome sequencing (WGS) is

anticipated to substitute a majority of diagnostic exome
sequencing, it is our opinion that Mendeliome and exome
sequencing will nevertheless be used as the cornerstone
testing approach in the forthcoming years. First, due to high
up-front costs, WGS is primarily available in larger facilities
and outside direct reach of the majority of medical

institutions. Furthermore, exome sequencing has been
established as the routine testing approach in multiple
institutions with a significant body of experience, evidence,
and validation data accumulated in the years of routine use.
Finally, implementation of WGS brings along an order of
magnitude higher load in terms of required processing
capacities and data storage, which makes it more difficult
for widespread diagnostic use in the current form. In
comparison with EEA, WGS is expected to detect all classes
of findings reported in the present study, while also enabling
the detection of pathogenic small deletions/duplications and
nonexonic causative variation. As the interpretation of a large
subset of variants identified by WGS is still challenging in the
clinical setting, we consider exome sequencing with extended
analysis to present a favorable compromise to maximize
diagnostic sensitivity, while still retaining the accessibility
and economic efficiency of exome sequencing in the clinical
setting.
In conclusion, we have shown that routine use of

comprehensive EEA approaches improves diagnosis of rare
diseases and in our study resulted in 4.2% increase of
diagnostic yield of diagnostic exome sequencing. Further-
more, we have shown a minimal increase in interpretation
workload per patient, making the introduction feasible in
routine diagnostic settings.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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