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INTRODUCTION
Mowat–Wilson syndrome (MWS; OMIM 235730) is caused by 
heterozygous deletions or loss-of-function variants of the ZEB2 
gene, which maps on region 2q22.3 (GRCh38 genomic coor-
dinates 2:144,384,374-144,520,390). Clinical manifestations 
include large, deep-set eyes; hypertelorism; large medially flaring 
and sparse eyebrows; rounded nasal tip; prominent columella; 

M-shaped upper lip; pointed triangular chin; uplifted, fleshy ear 
lobes with a central depression; and microcephaly. Additional 
features are moderate to severe intellectual disability, epilepsy, 
Hirschsprung disease, hypospadias in males, congenital heart 
disease, brain anomalies, and eye defects. The basic genomic 
defect is heterogeneous, including 2q21–q23 deletions encom-
passing ZEB2 and additional contiguous genes or partial gene 
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Purpose: Mowat–Wilson syndrome (MWS) is a genetic disease char-
acterized by distinctive facial features, moderate to severe intellectual 
disability, and congenital malformations, including Hirschsprung 
disease, genital and eye anomalies, and congenital heart defects, 
caused by haploinsufficiency of the ZEB2 gene. To date, no charac-
teristic pattern of brain dysmorphology in MWS has been defined.
Methods: Through brain magnetic resonance imaging (MRI) anal-
ysis, we delineated a neuroimaging phenotype in 54 MWS patients 
with a proven ZEB2 defect, compared it with the features identified 
in a thorough review of published cases, and evaluated genotype–
phenotype correlations.
Results: Ninety-six percent of patients had abnormal MRI results. The 
most common features were anomalies of corpus callosum (79.6% of 
cases), hippocampal abnormalities (77.8%), enlargement of cerebral  

ventricles (68.5%), and white matter abnormalities  (reduction of 
thickness 40.7%, localized signal alterations 22.2%). Other consistent 
findings were large basal ganglia, cortical, and cerebellar malforma-
tions. Most features were underrepresented in the literature. We also 
found ZEB2 variations leading to synthesis of a defective protein to 
be favorable for psychomotor development and some epilepsy fea-
tures but also associated with corpus callosum agenesis.
Conclusion: This study delineated the spectrum of brain anomalies 
in MWS and provided new insights into the role of ZEB2 in neuro-
development.
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deletions in a minority of subjects and intragenic loss-of-func-
tion variants, such as frameshift, stop gain, and splice-site vari-
ants, in most. Missense variants rarely occur in association with 
a typical MWS phenotype. Since the first description by Mowat 
in 1998, and after the definition of the distinct MWS phenotype 
with or without Hirschsprung disease, more than 270 cases of 
a proven ZEB2 haploinsufficiency have been reported so far.1–16

ZEB2 (zinc finger E-box binding homeobox 2), also known as 
ZFHX1B (zinc finger homeobox 1B) or SIP1 (Smad-interacting 
protein 1),17 is a member of the ZEB family of zinc finger tran-
scription factors, which are essential during normal embryonic 
development. ZEB family members induce epithelial to mesen-
chymal transition (EMT), a process that reorganizes epithelial 
cells to become migratory mesenchymal cells and is essential for 
developmental processes such as gastrulation, neural crest for-
mation, heart morphogenesis, formation of the musculoskeletal 
system, and craniofacial structures18–21 (Supplementary Figure 
S1 and Supplementary Table S1 online). In human embryos, 
ZEB2 was found to be homogeneously expressed throughout 
the central nervous system (CNS), from mesencephalon to spi-
nal cord.19

Of note, a mouse model expressing a conditional mutation in 
the Zeb2 gene in neural cell precursor cells clearly indicated a 
crucial role of Zeb2 for proper neural crest cell development.22 
Cranial neural crest cells differentiate into connective tissue 
and skeletal–muscular structures of the head, whereas vagal 
neural crest cells reach the gastrointestinal tract and the cardio-
vascular system. Therefore, nearly all MWS-associated clinical 
signs can be explained by a defect in the induction, migration, 
and differentiation of neural crest cells, thus fitting the descrip-
tion of a neurocristopathy.

Consistently, neurological involvement is a main feature of 
MWS in humans. Moderate to severe intellectual disability is 
present in all patients; epilepsy has a prevalence of 70–75% 
and has an age-dependent electroclinical pattern.8,14,23 Since 
the delineation of this disorder in 1998 by Mowat and Wilson, 
there has been an increasing appreciation of distinctive struc-
tural and functional neurologic anomalies in this condition. 
Previous studies point to several recurrent brain abnormalities 
in MWS. The most frequent are agenesis of corpus callosum 
(ACC) and corpus callosum hypoplasia (HCC), which account 
for 46% of the published cases.5,14,24 According to the definition 
by Edwards et al.,25 we consider “ACC” to encompass both total 
absence (complete ACC) and absence of at least one, but not 
all, of the anatomically defined regions of the corpus callosum 
(partial ACC), which results in a shorter anterior–posterior 
length. Hypoplasia denotes a corpus callosum that is thinner 
than usual but has a normal anterior–posterior extent. However, 
in the majority of papers, the authors do not specify what they 
meant by the terms “partial ACC” and “hypoplasia of corpus 
callosum.” It is likely that some of the patients reported to have 
hypoplasia had partial ACC, or vice versa, and that therefore 
the frequency of this finding has been misrepresented.

Other reported brain anomalies are ventriculomegaly,11 
cortical atrophy,6 pachygyria and cerebellar hypoplasia,26 and 

poor hippocampal formation.3,7 Although apparently rare, 
these findings are more likely to be underrepresented because 
no extensive neuroimaging studies involving individuals with 
MWS have been conducted so far—not all published cases 
involved cranial imaging, and some clinical case reports failed 
to mention any magnetic resonance imaging (MRI) studies. 
In particular, no literature studies have taken into account the 
comparison of the neuroimaging data with direct examination 
of brain MRI in a wide population of MWS patients.

Here, we performed a systematic longitudinal evaluation of 
brain MRI studies involving 54 MWS patients with the aims of 
further characterizing the spectrum of brain abnormalities in 
this syndrome, investigating genotype–phenotype correlations, 
and gaining new insights into the role of ZEB2 in human brain 
development.

MATERIALS AND METHODS
Cohort analysis
A cohort of 54 patients (23 males and 31 females) with molecu-
larly confirmed ZEB2 haploinsufficiency and available brain 
MRI data was assembled through the collaborative efforts of 
the contributing authors. Genetic and molecular studies are 
summarized in Supplementary Table S2 online. All cases were 
sporadic except for two affected sisters (subjects 29 and 30).

Each patient underwent head MRI from 1 to 12 sepa-
rate times, for a total of 74 neuroimaging studies (Table 1). 
Minimum requirements for MRI were (i) three-dimensional 
sagittal T1-weighted (T1-w) images with coronal, axial, and 
sagittal reconstructions; (ii) axial and coronal T2-weighted 
(T2-w) images; and (iii) axial fluid attenuation inversion recov-
ery (FLAIR) images.

A direct and systematic longitudinal review of the complete 
MRI data from the original CD-ROMs of all 74 studies was 
performed by two multidisciplinary teams consisting of neuro-
radiologists, pediatricians, pediatric neurologists, and medical 
geneticists. In addition to assessment for novel features, find-
ings from a literature review were used as a checklist for evalu-
ating the presence or absence of specific features reported in 
MWS (Table 1 and Supplementary Table S3 online).

Types of epileptic seizures and psychomotor development 
were assessed via both direct examination of the patients (neu-
rological, electroencephalography, MRI) and evaluation of 
their medical records.

All procedures involving patients performed in this study 
were in accordance with the ethical standards of the institu-
tional and/or national research committee and with the 1964 
Helsinki Declaration and its later amendments or comparable 
ethical standards. Written informed consent was obtained.

Evaluation of neuroimaging findings in the literature
In our review of the literature, encompassing all the brain neu-
roimaging findings reported so far, we identified 109 cases of 
both brain MRI described and MWS confirmed by ZEB2 gene 
analysis. For proper comparison with our cohort, we considered 
only the 56 cases for which it was clearly described that MRI 
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had been evaluated completely and in detail (Supplementary 
Table S3 online).

Statistical analysis
Characteristics of patients’ neuroimaging findings, epilepsy, 
and psychomotor development were analyzed by means of 
descriptive statistics. Differences in the listed categorical char-
acteristics between patients with predicted synthesis or absence 
of the variant protein were assessed using the Fisher exact test 
with P < 0.05 as the level of significance.

RESULTS
Neuroimaging features
In our cohort, only 2 of 54 patients (3.7%) had normal neuro-
imaging findings, whereas 25 of 56 (44.6%) in the literature had 
normal MRI findings (Figures 1 and 2, and Supplementary 
Figure S2 online); 83.3% of our patients had from 2 to 7 abnor-
malities, with an average of 3.54.

A distinctive feature observed in more than half of the patients 
was a commissural defect. Corpus callosum abnormalities were 
documented for most patients and consisted of complete ACC, 
partial ACC (localized in the caudal or in the rostral third), or 
hypoplasia with thin corpus callosum.

We made a comparison between the corpus callosum abnor-
malities in our study and the 56 in the literature that had both 
MRI described in detail and MWS confirmed by ZEB2 gene 
analysis.

In our series, 14 patients (25.9%) had complete agenesis of 
corpus callosum compared with 23.2% of the literature. In our 

group, partial agenesis of corpus callosum was observed in nine 
patients (16.67%) compared with 1.8% of the literature. In the 
majority of the cases the agenesis was typical, with frontal resi-
due, splenium absence, and preservation of the genu.

MRI showed hypoplasia of the corpus callosum with thin 
corpus callosum in 20 patients (37.04%), whereas it was found 
in 23.2% of those in the literature.

White matter abnormalities were commonly observed find-
ings, including reduction of thickness, which was widespread 
in the whole brain or more evident in one or more lobes. 
Reduction of white matter thickness was present in 22 patients 
(40.7%) compared with 17.9% in the literature. Localized signal 
alterations of white matter were present in 22.2% of our cases 
(12 patients); comparison with data in the literature was not 
possible because insufficient information was available.

Concurrently, ventriculomegaly was present, with widening 
of the temporal or occipital horns. Lateral ventricle enlarge-
ment was evident in 38.9% of our cases (21 patients) compared 
with 12.5% in the literature, and ventricular temporal horn 
enlargement was detected in 59.26% of our series (32 patients) 
compared with 12.5% in the literature.

Bilateral hippocampal abnormalities were noted in more than 
half of our population (42 patients, 77.8%) with morphological 
or positional anomalies, whereas in the literature these abnor-
malities were noted in only 7.1% of cases. Large basal ganglia, 
a rare anomaly not previously reported in MWS, was observed 
in 3 patients (5.6%).

Other findings included two cases of hypoplastic cerebel-
lum and one case each of polymicrogyria,27 periventricular 

Figure 1  Brain magnetic resonance imaging findings in the cohort and in the literature.
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heterotopia, focal cortical dysplasia, Chiari type 1 malforma-
tion, absent cerebellar vermis, small cerebellar vermis, and mac-
rocerebellum. We also examined one case of CNS tumor, which 
had already been reported previously.28

Genotype–phenotype correlations with MRI findings
The types of mutation in our cohort included large deletions 
(in eight patients: n = 8), small deletions/insertions/indels 
with frameshift (n = 21), and nonsense mutations (n = 25). 
According to protein synthesis prediction (taking into account 

the position of premature stop codons and possible mRNA 
degradation29), all of these variants can be stratified into three 
major groups: (A) complete deletion of a ZEB2 allele (n = 7), 
(B) mutations predicted to lead to absence of the protein prod-
uct (n = 40), and (C) mutations predicted to lead to synthesis of 
a defective protein (n = 7).

To allow statistical analysis, we also considered individuals 
with ZEB2 whole-allele deletion, patients with other variants 
that lead to absence of the protein in a single group (A+B; n = 
47), and patients with predicted synthesis of a defective protein 

Figure 2 Brain magnetic resonance imaging findings in the cohort. (a) Complete agenesis of corpus callosum; (b) partial agenesis of corpus callosum; 
(c) hypoplasia of corpus callosum; (d) hippocampal abnormalities; (e) lateral ventricle enlargement and reduction of white matter thickness; (f) localized 
signal alteration of white matter; (g) cortical dysplasia; (h) ventricular temporal horn enlargement; (i) large basal ganglia; (j) posterior fossa findings; and (k) 
periventricular nodular heterotopia.
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in another group (C; n = 7). Based on these categories, we delin-
eated a genotype–phenotype correlation for the neurological 
features found in our patients (Figure 3).

Overall, anomalies of the corpus callosum were very fre-
quent in all groups: 87.5% (n = 6/7) in group A, 72.5% (n = 

29/40) in group B, and 100% (n = 7/7) in group C (Figure 3a). 
However, some heterogeneity emerged by observing specific 
defects: complete ACC was most frequent in group C (71.4%, 
n = 6/7), whereas it was rare in group B (12.5%, n = 5/40) and 
fairly common in group A (57.1%, n = 4/7). When considering 

Figure 3 Genotype–phenotype correlation. (a) Brain magnetic resonance imaging features; (b) seizure onset; (c) types of seizures and resistance to therapy; 
and (d) developmental milestones.

120%

35

Seizures onset

Seizures
present

Fever triggered Focal Focal with
secondary

generalization

Generalized
tonic-clonic

Absence Myoclonic Drug resistant
epilepsy

Seizures onset-age at onset in months-

Type of seizures

Development milestones-age of acquisition in months-

Sitting Walking First words

Whole gene deletion (Group A)

Protein absence (Group B)

Defective protein (Group C)

30

25

20

15

10

5

0

100%

80%

60%

Complete
agenesis of

corpus callosum

Partial agenesis of
corpus callosum

Hypoplasia of
corpus callosum

Abnormal corpus
callosum

Lateral ventricles
dilatation

Brain MRI features

Temporal horn
dilatation

Hippocampal
abnormalities

Reduction of
white matter

thickness

Localized signal
alteraions

40%

20%

0%

120%

100%

80%

60%

40%

20%

0%

120

100

80

60

40

20

0

a

b

c

d

 Volume 19  |  Number 6  |  June 2017  |  GENETICS in MEDICINE696



Neuroimaging in Mowat–Wilson syndrome  |  GARAVELLI et al Original research article

all variants leading to predicted protein absence, we found a 
statistically significant difference in the occurrence of complete 
ACC (19.14% in group A+B vs. 71.4% in group C; P = 0.0095).

Hippocampal abnormalities were present in at least 71.4% 
individuals in each group, with a frequency of 100% in group 
C (Figure 3a).

Genotype–phenotype correlations with epilepsy
Epilepsy is one of the main features of MWS. In our cohort, 
91.8% of the patients (n = 45/49) had seizures, with a mean 
onset at 29.7 months.

The earliest onset was at age 3 months in a patient from group 
A; the latest onset was in a patient at age 10 years. Patients in 
group A generally had an earlier onset, with a mean of 24.4 
months, whereas patients in groups B and C had average onsets 
at 32 and 30 months, respectively (Figure 3b). Four patients in 
our cohort—all in group B—have not manifested seizures to 
date: two of them are younger than 2 years, one is 4 years old, 
and the oldest is 11.5 years old.

Fever-triggered seizures occurred in 55.8% of patients (n = 
24/43), with the highest frequency in group C (66.6%, n = 4/6) 
and the lowest in group A (16.67%, n = 1/6).

Focal, absence, and generalized tonic clonic seizures were 
equally represented in all three groups (79.3–83.3, 50–60, and 
43.85–60% respectively).

Focal seizures with secondary generalization were more fre-
quent in group B (51.8%, n = 14/27); in groups A and C they 
occurred in 40% (n = 2/5) and 16.67% (n = 1/6) of cases, respec-
tively. None of the patients with complete deletion of a ZEB2 
allele presented with myoclonic seizures, whereas in group B 
and group C the frequencies were 24 and 33.3%, respectively. 
None of the patients in group C had resistance to antiepileptic 
drugs, whereas in groups A and B epilepsy was resistant in 50% 
(n = 3/6) and 29.6% (n = 8/27) of cases, respectively (Figure 3c).

Genotype–phenotype correlations with psychomotor 
development
All patients with typical MWS display psychomotor develop-
mental delay, evaluated on the basis of sitting age, walking age, 
and age of first words. Based on our results, patients with pre-
dicted synthesis of a defective protein (group C) have the least 
severe delay of all three groups.

Considering only the cases for which we have valid data, mean 
ages of sitting without support were 17.14 months in group 
C (n = 7/7), 19.98 in group B (n = 26/40), and 24 in group A  
(n = 4/7). Mean ages of autonomous walking were 44.67, 49.78, 
and 80 months in groups C, B, and A, respectively. Speech was 
the most severely affected feature for all patients with MWS. 
In our cohort, the mean age of first words was 40.5 months in 
group C, 43.2 months in group B, and undetermined in group 
A (the exact onset of speech was available only for one 9-year-
old patient). At least 60% of the patients with complete deletion 
of ZEB2 had complete absence of speech (Figure 3d); the rest 
of the patients were capable of saying a few words (fewer than 
five).

DISCUSSION
MWS could be conceived as an in vivo model of the conse-
quences of ZEB2 haploinsufficiency on human neurodevelop-
ment, and neuroimaging is an important tool for highlighting 
its effects on the macrostructural anatomy of the CNS. To our 
knowledge, this study is the first attempt to carefully examine 
the neuroradiological characteristics of MWS in a large cohort 
of patients and in light of recent advances concerning the role 
of ZEB2 in neuroembryology.

Through systematic brain MRI analysis, we delineated a 
neuroradiological phenotype of MWS, characterized by a high 
frequency of complete or partial ACC, hypoplasia of corpus 
callosum (thin corpus callosum), hippocampal abnormalities 
(particularly malrotation), reduction of white matter thickness, 
and anomalies in the cerebral ventricles such as dilatation and 
temporal horn enlargement. Less common but relevant find-
ings were large basal ganglia, polymicrogyria, nodular periven-
tricular heterotopia, cortical dysplasia, cerebellar hypoplasia, 
Chiari type 1 malformation, and localized signal alteration of 
white matter (Figures 1 and 2, and Table 1).

Previous studies showed a stable rate of 46% of corpus cal-
losum anomalies (ACC) across different populations.5,14,24 
Our study highlights that commissural defects are present, 
at least partially, in a much greater proportion of cases. In 
addition to complete ACC, several grades of partial ACC 
and HCC are often displayed, and the other commissures 
can also be altered in patients with MWS. In particular, par-
tial ACC was almost 10 times more frequent than in previ-
ously reported cases.

Other structural brain abnormalities were very common in 
our cohort, with most patients displaying more than one rel-
evant feature, but were rarely reported in previously published 
works. In particular, hippocampal anomalies and enlargement 
of ventricles were, respectively, 10 and 6 times more common 
in our cohort. Some other features, such as localized signal 
alterations of the white matter and large basal ganglia, have not 
been previously described for MWS. Our results suggest that all 
these may be underrecognized findings.

Alterations of the corpus callosum in MWS are consistent 
with a mouse model described by Srivatsa et al.,30 which indi-
cated that Zeb2 is essential for the formation of intracortical, 
intercortical, and corticosubcortical connections in the murine 
forebrain: Zeb2-deficient neocortical neurons fail to form the 
corpus callosum, anterior commissure, and corticospinal tract.

In another mouse model, Weng et al.31 demonstrated that 
Zeb2 acts as a master regulator for myelination in the CNS, 
connecting extracellular signaling pathways to intracellular 
transcriptional programs and promoting the transition from 
immature to mature myelinating oligodendrocytes. This would 
explain the reduction in thickness or signaling alterations of 
the white matter consistently observed in 40.7 and 22.2% of our 
patients, respectively.

Hippocampal morphological and/or positional abnor-
malities were found in more than half of our population. 
This could be the consequence of the commissural defects, 
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but direct involvement of ZEB2 cannot be excluded. In fact, 
Miquelajauregui highlighted the role of Zeb2 in the develop-
ment of the hippocampus, as its inactivation causes death of 
differentiating cells and decreased proliferation in the region 
of the prospective hippocampus in mutant mice.32 Analysis by 
Nishizaki confirmed its expression in the pyramidal hippocam-
pal neurons.33

Two patients showed cerebellar hypoplasia, which has been 
reported.26 We speculate a possible role of ZEB2 in this malfor-
mation because Nishizaki demonstrated the expression of Zeb2 
in Bergmann cells in the cerebellum of mice.33

Furthermore, brain anatomy does not seem to discriminate 
the cognitive outcome among the analyzed patients, who show 
a marked, global impairment.

Genotype–phenotype correlations
One aim of this study was to delineate a genotype–phenotype 
correlation for the neurological features of MWS. More than 
100 different variations have been described in the literature in 
patients with clinically typical MWS. They almost always con-
sist of whole-gene deletions or intragenic truncating mutations 
(nonsense or frameshift) of ZEB2, suggesting that haploinsuf-
ficiency is the basis of MWS pathology. No obvious genotype–
phenotype correlation has been identified to date,12 but atypical 
phenotypes have been reported in association with missense or 
specific splice-site mutations in the ZEB2 gene, indicating that 
some sort of genotype–phenotype correlation in MWS prob-
ably exists.34,35

In the absence of a detailed functional characterization of 
each ZEB2 variant, we compared our neurological findings 
(brain MRI features, EEG and epilepsy features, psychomo-
tor developmental milestones) with those for three broad 
genotypic categories determined by the predicted effect of the 
genomic variation on protein synthesis.

Because some literature reports suggest a more severe phe-
notype in association with large locus deletions, we separated 
those cases into a group separate from predicted protein 
absence due to intragenic mutations.

In addition, a few reported variants are expected—or, in rare 
cases, have been proven—to affect the protein product in other 
ways: missense mutations leading to defective repressor activity 
or protein processing or splice-site mutations eliminating spe-
cific functional domains or favoring a documented alternative 
splicing.8,12,34–36 However, their numbers are extremely small: 
less than 5% of all reported cases worldwide and less than 2% if 
we consider only typical MWS. None of these were present in 
our cohort.

Most brain MRI features have no significant relationship to 
these genotypic groups. Overall, corpus callosum anomalies are 
equally represented in all categories; however, when observing 
specific defects, complete ACC seems particularly infrequent 
in patients with protein absence due to intragenic mutations 
(Figure 3a). By considering together all variations with pre-
dicted absence of protein, variations expected to lead to a defec-
tive protein result significantly associated with complete ACC 

(P = 0.0095). Because most of the variants from group C are 
predicted to be truncated and likely nonfunctional proteins, we 
hypothesize that corpus callosum formation might be particu-
larly sensitive to a dominant negative effect from protein accu-
mulation or to some undefined feedback mechanism triggered 
by ZEB2 synthesis and lack of repressor activity.

Epilepsy
All patients with epilepsy had seizures regardless of the geno-
typic variation, but we observed some variability, depending on 
the type of seizure (Figure 3b,c). Although the numbers were 
small and could be used only for a descriptive analysis, patients 
with whole-allele deletion were recurrently associated with 
worsening features, particularly an earlier onset of seizures and 
a high incidence of drug resistance. However, the later onset of 
seizures and the lack of resistance to antiepileptic drugs indi-
cate a slightly more favorable evolution of epilepsy in patients 
predicted to have synthesis of a defective protein.

The four patients who did not present with seizures were all 
predicted to have protein absence, but we would be cautious 
to assume that this might be due to simple statistical chance 
because group B is larger by far than the other two, leading to 
no significant correlation.

Epilepsy is often caused by malformations of cortical 
development, but these were rarely observed in our cohort. 
Furthermore, we found no evidence of significant correlation 
between the brain malformation phenotype, including hippo-
campal alterations, and the epilepsy phenotype in our patients. 
Even when cortical malformations were evident with brain 
MRI, no differences were observed in the characteristics of epi-
lepsy because these patients showed the typical electroclinical 
pattern in patients with MWS.23

These observations, together with the recurrent clinical pat-
tern and age-dependent development, reinforce the plausible 
hypothesis that epilepsy in MWS has a genetic etiology. ZEB2 
has been demonstrated to play a crucial role in promoting cere-
brocortical lamination37 and myelination in mice and humans, 
through antagonism of inhibitory signaling.31 Later studies 
have supported the influence of ZEB2 on the neurogenesis 
of cortical GABA-ergic interneurons: conditional deletion of 
Zeb2 in the medial ganglionic eminence of mice prevents the 
repression of the Nkx2-1 homeobox transcription factor, caus-
ing differentiation into striatal interneurons rather than cortical 
ones.38 This switch could explain the occurrence of epilepsy in 
MWS, as proposed by McKinsey, Cordelli, and van den Berghe 
and colleagues.38–40

Psychomotor development
All patients with typical MWS display psychomotor devel-
opmental delay. Based on our results, patients with predicted 
synthesis of a defective protein have the least severe delays of 
all three groups (sitting age, walking age, and first words age) 
(Figure 3d). The more severe developmental delay observed 
in patients with whole-ZEB2-allele deletion may correlate with 
the severity and type of epileptic seizures.
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Conclusions
Several types of malformations can be detected with brain 
MRI, usually those involving the corpus callosum, hippo-
campus, and ventricular system. No cortical macrostructural 
abnormality appears to be clearly related to epilepsy onset 
and its features, which are probably genetically induced. CNS 
defects in MWS appear to correlate with the data observed in 
mice models and confirm in vivo the ZEB2 ability of regulat-
ing (at the least) myelination and hippocampus development. 
Our data are also consistent with ZEB2-expression patterns in 
the CNS of human embryos.19 Thus, the effects of ZEB2 hap-
loinsufficiency in the diencephalon would explain the ACC 
observed in most patients and its defects in the mesencephalon 
could provide the basis for epilepsy, whereas its defects in the 
rhombencephalon could correlate with the severe intellectual 
disability.

We also found an indication that the effect of specific muta-
tions could influence the clinical phenotype of MWS. Overall, 
our results suggest that the most favorable type of mutation for 
psychomotor development and for some aspects of epilepsy, 
such as drug-resistant epilepsy, would be that in which there 
is synthesis of a defective protein. However, this genomic cat-
egory seems to be associated with some other features, such as 
complete ACC.

Specific functional studies are required to understand the 
biological properties of ZEB2 in MWS and clarify the molecular 
pathway of its protein–protein interactions, in order to facili-
tate prediction of the severity of this syndrome and enable the 
development of targeted therapeutic strategies.

Until then, the detailed brain MRI phenotype of MWS we 
provide here will help improve clinical suspicion and therefore 
the detection rate of this condition.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim
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