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Abstract: Genetic polymorphisms described for a number of enzymes
involved in the metabolism of tobacco carcinogens and alcohol have
been linked to increase cancer risk. Racial disparities in cancer between
whites and populations of African descent are well documented. In
addition to differences in access to health care, both environment and
genetic factors and their interaction may contribute to the increased
cancer risk in minority populations. We reviewed the literature to
identify case-control studies that included subjects of African descent.
Meta-analyses investigating the association of genetic polymorphisms
in tobacco metabolic genes and cancer were performed. Although
several genes and cancers have been studied, only one or two studies per
gene for each cancer site have been published, with the exception of
breast (CYP1A1 and CYP1B1), lung (GSTM1, CYP1A1, and NQO1),
and prostate (CYP3A4 A293G and CYP17). Marginal statistically sig-
nificant associations were observed for CYP3A4 A293G and CYP17
5�UTR polymorphisms and prostate cancer. Our findings support the
need for additional genetic association studies of breast, prostate, and
lung cancers that include a larger number of minority participants.
Because incidence and mortality rates for these cancers rank highest
among populations of African descent, concentrated research in these
areas are warranted. Genet Med 2010:12(1):12–18.
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Phase I and Phase II metabolic genes encode important en-
zymes in the metabolism of tobacco carcinogens. Phase I

enzymes are responsible for converting chemicals into com-
pounds that bind mainly with DNA, thus being genotoxic. An
example of Phase I enzymes is the Cytochrome P-450(CYP)
family, which play a major role in tobacco carcinogen activa-
tion. Phase II enzymes are involved in the cellular detoxification
of many carcinogens. The glutathione S-transferase (GSTM1,
GSTP, and GSTT1) is an example of a Phase II enzyme. Sub-
strates for GSTs include acetaldehyde, an alcohol metabolite,
and several intermediate metabolites of polyaromatic hydrocar-
bons found in tobacco smoke. Genetic polymorphisms have

been described for a number of enzymes involved in the me-
tabolism of tobacco carcinogens and alcohol, and many of these
polymorphisms have been linked to phenotypic differences in
enzyme activity or expression.1,2 Differences in the metabolic
activation and detoxification pathways of these metabolic genes
are likely to be a major source of interindividual variation in
cancer susceptibility. However, in the absence of the main
exposure (such as tobacco smoke), the contribution of these
genetic factors is likely relevant. Genetic polymorphisms mod-
ulate the association observed between exposure (such as to-
bacco smoke) and cancer. Therefore, gene-environment inter-
actions must be considered when evaluating the associations
between exposures and diseases.

Racial disparities in cancer risk between whites and popula-
tions of African descent have been well documented in the
United States. Between 1975 and 2006, the age-adjusted inci-
dence rates for all cancer sites combined were 466.6/100,000
for whites and 505.9/100,000 for African-Americans.3 In addi-
tion to differences in access to health care, it is likely that both
environment and genetic factors and their interaction contribute
to the increased cancer risk observed in minority populations.
However, few studies addressing gene-environment interactions
have been conducted. For a number of cancer types, case-
control studies have reported that polymorphisms in tobacco
metabolic genes are associated with cancer risk,4–6 but inves-
tigations of these associations according to ethnic background
are limited. Some case-control studies include smaller numbers
of African-American subjects compared with whites, therefore
are unable to report meaningful results for African-Americans
because of lack of statistical power. For example, a previous
pooled analysis of case-control studies evaluating the associa-
tion of GSTM1 and CYP1A1 polymorphisms in oral and pha-
ryngeal cancer reported no overall association, although the
odds ratio (OR) in 294 African-Americas and Africans cases
combined was almost 2.0.7 We have systematically reviewed
the literature to identify all case-control studies that have in-
cluded subjects of African ancestry and provided a summary of
these existing studies. We have also performed meta-analyses
investigating the association of genetic polymorphisms in tobacco
metabolic genes and cancer risk in populations of African descent.

METHODS

Selection criteria
A Medline literature search for case-control and nested case-

control studies published between 1966 and October 5, 2009, on
the association of metabolic gene polymorphisms and any can-
cer in populations of African descent was conducted using the
search term: (African-American or African) and (gene or poly-
morphism) and cancer. Only studies published in English,
French, Spanish, or Italian and reporting genotypes for incident
cases and controls using polymerase chain reaction methods
were included in this review. Genes included were both Phase
I and Phase II metabolic genes. The search yielded 80 original
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articles. Studies that did not provide race-specific genotype data
by cases and controls were excluded from the analysis. Overlap
of study subjects was evaluated by comparing sources of data
described in the published methods and through crossreferenc-
ing using the Genetic Susceptibility to Environmental Carcin-
ogens database (www.gsec.net).8 In the case of multiple publi-
cations reporting overlapping data, the more inclusive study was
retained. An additional search was performed with each gene
polymorphism identified from the first search along with alter-
native names and (variant or polymorphism) and cancer. This
search yielded 19 additional studies.

Of the 99 publications, three were excluded because data on
subjects of African descent was combined with those of mixed
ancestry9–11; three publications presented data that overlapped
with more inclusive publications from the same authors12–14; seven
did not provide race-specific genotype data15–21; three provided
allele frequencies only22–24; one did not report genotype data for
the controls25; two studies reported only on haplotypes26,27; and
one was a methylation study and did not report on gene polymor-
phisms.28 After exclusions, 79 studies remained for consideration
in this review and meta-analysis (see Table, Supplemental Digital
Content 1, http://links.lww.com/GIM/A91, which describes the
publications included in this study).

Statistical analysis
Study-specific crude ORs and 95% confidence intervals (CIs)

were recalculated to assess the association of each metabolic gene
polymorphism and cancer, based on the reported genotype data
by cases and controls. Meta-analytical techniques were applied
for all metabolic gene polymorphisms reported in three or more
studies using inverse-variance weighting to calculate the fixed
and DerSimonian and Laird weighting to calculate random
effects summary estimates.29 Random effects summary esti-
mates were reported only when between-study heterogeneity
was observed. Heterogeneity was evaluated using a Q-statistic,
with significance considered at P � 0.10,30 and I2 metric and
95% CI to measure the percent variation in the OR because of
heterogeneity.31,32 I2 values that are 50% or higher indicate
large between-study heterogeneity, whereas values of 25–50%
indicate moderate between-study heterogeneity. In the absence
of statistical heterogeneity, the summary or meta-OR and cor-
responding 95% CI were reported based on the fixed effects
model; when heterogeneity was observed, the results from the
random effects model were reported. Corresponding forest plots
were generated for a visual representation of all meta-analyses.
The overall estimate and CI reported in the figures represent the
meta-OR and CI. The Harbord test33 was used to test for
small-study effects, with significance considered at P � 0.10.
The definition of race was self-reported in the studies included
in this analysis, and African-American populations have various
degrees of admixture. In an attempt to create homogeneous
groups for analysis, differences in genotype frequencies be-
tween African-Americans and other African control populations
were tested for the genes, which were included in the meta-
analysis. Tests on the equality of proportions were performed
for each group, and summary ORs were reported separately. In
addition, stratified analyses according to geographic areas were
performed where possible. All statistical analyses were carried
out using STATA SE, version 10, software (StataCorp LP,
College Station, TX).

RESULTS

We have summarized the studies that have reported data for
various polymorphisms in populations of African descent and

grouped according to cancer type (see Table, Supplemental
Digital Content 1, http://links.lww.com/GIM/A91, which de-
scribes the publications included in this study). For breast
cancer, 20 polymorphisms have been studied, but for 16 of the
polymorphisms (79%) only one or two studies were conducted.
There were three studies on CYP1A1 Ile/Val, four studies on
CYP1B1 V432L, and five studies each on CYP1A1 Msp1 and
CYP1A1 African-American-specific (AA specific) polymor-
phisms. For lung cancer, 18 polymorphisms have been studied,
but for 14 of the polymorphisms (78%), only one or two studies
were published. There were seven studies on CYP1A1 Msp1,
four studies each on GSTM1 deletion and NQO1 (C609T), and
three studies on CYP1A1 (AA specific) polymorphisms. For
prostate cancer, 27 polymorphisms have been studied, but for
25 of them (95%), only one or two studies have reported data.
There were four studies on CYP3A4 (A293G) and five studies
on CYP17 (5�UTR). For all other cancers (bladder, pancreas,
kidney, head and neck, colon, brain, ovarian, esophagus, and
leukemia), there was one or two publications for each polymor-
phism.

When looking at the genes for which only one or two studies
reported data, there was no significant association between the
polymorphism and the corresponding cancer, except for one
study of GSTT deletion and prostate cancer showing an OR of
0.5 (95% CI � 0.8–0.88)34; a single study of CYP1B1 (R48G)
(OR: 2.22; 95% CI � 1.01–5.09), CYP17 (rs17115144) (OR:
3.92; 95% CI � 1.04–14.43), CYP19 (rs11636639) (OR: 2.36;
95% CI � 1.10–5.05), CYP19 (rs3751592) (OR: 2.88; 95%
CI � 1.39–6.03), and CYP27B1 (OR: 0.29; 95% CI � 0.08–
0.88) and prostate cancer35; one study of CYP3A43 (P340A) and
prostate cancer (OR: 3.54; 95% CI � 1.36–9.94)36; one study of
CYP17 (5�UTR) and lung cancer (OR: 3.03; 95% CI � 1.19–
8.17)37; and one study of ADH2*3 (R370C) and ALDH2*2
(Q487K) polymorphisms and esophageal cancer (OR: 2.19;
95% CI � 1.23–3.90 and OR: 9.26; 95% CI � 1.16–419.64,
respectively).38

Meta-analysis

GSTM1 deletion
For all cancers, 17 publications reported data on populations

of African descent, for a total of 1437 cancer cases and 2026
controls. A meta-estimate of cancer risk with the GSTM1 dele-
tion was only possible for lung cancer since four studies were
conducted (497 cases and 624 controls). The source of controls
was for the most part the healthy population (three of four
studies), and all the subjects were African-American. The
meta-OR was 1.26 (95% CI: 0.96–1.65). There was no statis-
tical evidence of heterogeneity among the four studies on lung
cancer (Q: 3.47; P � 0.324; I2 � 14%, 95% CI: 0–87) or
small-study effect (P � 0.548).

CYP1A1 Msp1
For all cancers, there were 14 studies on CYP1A1 Msp1

polymorphism and cancer in populations of African descent, for
a total of 1782 cases and 2213 controls. Seven studies were
conducted on lung cancer (960 cases and 1189 controls) and
five on breast cancer (763 cases and 864 controls).

For lung cancer, four of the seven studies (57%) involved
controls from the healthy population. Five included African-
American subjects37,39–42 and two included subjects from Bra-
zil.43,44 There was no significant difference in the frequency of
the CYP1A1 Msp1 polymorphism between African-Americans
and Brazilians (42.5% vs. 43.7%, P � 0.847). The ORs for the
CYP1A1 Msp1 variant in the two Brazilian studies were both
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increased but not significant, and there was no overall associa-
tion between the CYP1A1 Msp1 homozygous variant and lung
cancer in African-Americans (meta-OR: 0.93; 95% CI: 0.62–
1.40). There was moderate heterogeneity between the African-
American studies (Q statistic: 6.19, P: 0.186; I2 � 35.0%, 95%
CI: 0–76) and no evidence of small-study effect (P � 0.943).
There was also no overall association between the CYP1A1
Msp1 heterozygotes and lung cancer (meta-OR: 1.00; 95% CI:
0.82–1.21), with no evidence of heterogeneity between studies
(Q statistic: 3.48; P � 0.481; I2 � 0.0%, 95% CI: 0–79), or of
small-study effect (P � 0.379).

For breast cancer, four of the five studies involved African-
American subjects and controls from the healthy population
(543 cases and 646 controls).45–48 The fifth study involved a
Nigerian population with hospital controls (220 cases and 218
controls).49 There was no significant difference in the frequency
of the CYP1A1 Msp1 polymorphism between African-Ameri-
cans and Africans from Nigeria (41.8% vs. 40.37%, P � 0.711).
The meta-OR for the CYP1A1 Msp1 homozygous variant in
African-Americans (meta-OR: 1.19; 95% CI: 0.71–1.99) was
compared with the OR for the single African study (OR: 0.91;
95% CI: 0.41–2.00), and neither was statistically significant.
There was also no association between the CYP1A1 Msp1
heterozygous variant with breast cancer in African-Americans
(meta-OR: 0.95; 95% CI: 0.74–1.22) or in the single African
study (meta-OR: 0.94; 95% CI: 0.61–1.44). For African-Amer-
icans, there was evidence of large between-study heterogeneity
for both the homozygous (Q statistic: 7.42; P � 0.060; I2 �
60%, 95% CI: 0–87) and heterozygous (Q statistic: 5.02; P �
0.170; I2 � 40%, 95% CI: 0–80) variants but no evidence of
small-study effect for either (P � 0.626; P � 0.884).

CYP1A1 Ile/Val
For all cancers combined, nine studies included separate

results on populations of African descent, for a total of 1022
cases and 1692 controls. A meta-estimate of cancer risk with the
CYP1A1 Ile/Val was only possible for breast cancer since three
studies reported data for a total of 528 cases and 791 controls.
The other cancers studied included ovarian, lung, pancreas, and
head and neck cancers. All four breast cancer studies included
African-Americans, and the source of controls was the healthy
population. No significant association was reported in any in-
dividual study. A meta-estimate was only possible for the as-
sociation of CYP1A1 variant (Ile/Val and Val/Val allele carriers
combined) and breast cancer (meta-OR: 0.77; 95% CI: 0.46–
1.30). There was no evidence of between-study heterogeneity
(Q statistic: 2.50; P � 0.286; I2 � 20%, 95% CI: 0–92) or
small-study effect (P � 0.366).

CYP1A1 African-American specific
There were nine studies on the African-specific polymor-

phism (1123 cases and 1624 controls), for lung, breast, and
ovarian cancer. Four studies reported data for breast cancer, and
three studies reported data for lung cancer.

For breast cancer, four of the five studies included African-
American populations (542 cases and 645 controls)45–48 and the
fourth included a Nigerian population (229 cases and 227 con-
trols).49 The source of controls was the healthy population for
all except for the Nigerian study. There was a significant dif-
ference in the frequency of this polymorphism between African-
Americans and Africans from Nigeria (15.8% vs. 24.2%, P �
0.005). The summary estimate was calculated for the associa-
tion of CYP1A1 (AA specific) variant (wt/var and var/var allele
carriers combined) for African-Americans (meta-OR: 1.14;

95% CI: 0.83–1.57) and was similar compared with the OR
reported for Nigerians (OR: 0.94; 95% CI � 0.60–1.48).

For lung cancer, the three studies included African-American
populations (319 cases and 626 controls),41,50,51 and all the
controls were from healthy populations. The summary estimate
was also calculated for the association of CYP1A1 (AA specific)
variant (wt/var and var/var allele carriers combined) (meta-OR:
1.00; 95% CI: 0.70–1.45). There was no evidence of heteroge-
neity among studies for lung (Q statistic: 1.65; P � 0.438; I2 �
0.0%, 95% CI: 0–90), and there was moderate heterogeneity
between the African-American breast cancer studies (Q statis-
tic: 5.61; P � 0.132; I2 � 47%, 95% CI: 0–82). There was no
evidence of small-study effect for neither lung (P � 0.294) nor
breast (P � 0.985).

CYP1B1 V432L
For all cancers, combined six studies reported data separately

for populations of African descent. Four were breast cancer
studies, and three of the four studies involved hospital controls.
There were three breast cancer studies that included African-
Americans (293 cases and 325 controls)48,52,53 and the fourth
included a Nigerian population (228 cases and 226 controls).54

There was a significant difference in the frequency of this
polymorphism between African-Americans and Africans from
Nigeria (47.1% vs. 19.5%, P � 0.0001). Neither the African-
American studies nor the African study reported an association
between the homozygote or heterozygote polymorphisms and
breast cancer (data not shown). There was moderate heteroge-
neity between the African-American studies and no evidence of
small-study effect (data not shown).

NQO1 (C609T)
Four studies on lung cancer and the NQO1 polymorphism in

African populations were published and three of the four in-
cluded healthy controls as comparison group (358 cases and 375
controls). All the studies included African-Americans. No as-
sociation with lung cancer was reported for the NQO1 (C609T)
variant (CT � TT), (meta-OR: 0.91; 95% CI � 0.67–1.23), and
there was no evidence of heterogeneity among the studies (Q
statistic: 0.68; P � 0.878; I2 � 0.0%, 95% CI: 0–85) or
small-study effect (P � 0.762).

CYP3A4 (A293G)
Four of the six studies involving the A293G polymorphism of

the CYP3A4 gene were conducted on prostate cancer, for a total
of 608 prostate cases and 776 controls. The other two studies
were on breast cancer. There is a consensus among studies on
the association between the polymorphism and prostate cancer
in populations of African descent. Three of the four prostate
cancer studies included African-American55–57 populations
only, whereas one included both African-American and Nige-
rian populations.58 There were 531 African-American cases and
694 controls, and there were 77 Nigerian cases and 82 controls.
There was a significant difference in the frequency of the
CYP3A4 (A293G) polymorphism (GG) between African-Amer-
icans and Africans from Nigeria (41.2% vs. 74.4%, P �
0.0001). Although there was no association of CYP3A4 A293G
homozygote variant and prostate cancer in Nigerians (OR: 0.3;
95% CI � 0.01–3.63) or in African-Americans, the meta-OR
was almost twofold (meta-OR: 1.55; 95% CI � 0.81–2.95) for
African-Americans (Fig. 1), but there was large between-study
heterogeneity (Q statistic: 8.24; P � 0.041; I2 � 64.0%, 95%
CI: 0–88) and no small-study effect (P � 0.231). Similarly,
there was no association between A293G heterozygous variants
and prostate cancer for the Nigerian (OR: 0.38; 95% CI �
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0.01–5.32) or the African-American (meta-OR: 1.26; 95% CI:
0.72–2.20) studies. There was large heterogeneity between the
African-American studies (Q statistic: 6.63; P � 0.085; I2 �
55%, 95% CI: 0–85) and evidence of small-study effect (P �
0.05).

CYP17 (5�UTR)
For all cancers combined, eight studies reported data for the

CYP17 5�UTR polymorphism (595 cases and 839 controls).
Five studies were conducted on prostate cancer, for a total of
277 cases and 494 controls.55,59–62 Two studies were on breast
cancer48,63 and one study on lung cancer.37

All the prostate cancer studies included African-American
populations. The homozygous variant polymorphism was mar-
ginally associated with prostate cancer (meta-OR: 1.56; 95%
CI: 0.97–2.51), without evidence of heterogeneity among stud-
ies (Q statistics: 2.31; P � 0.679; I2 � 0.0%, 95% CI: 0–79),
or small-study effect (P � 0.759) (Fig. 2). There was no
statistically significant association between the heterozygous
variant and prostate cancer (meta-OR: 1.35; 95% CI: 0.65–
2.80), although considerable between-study heterogeneity was
present (Q statistics: 13.39; P � 0.010; I2 � 70%, 95% CI:
24–88). There was no evidence of small-study effect (P �
0.276).

DISCUSSION

This review of the literature indicates that although there is a
wealth of studies on genetic polymorphisms and cancer risk,
studies on populations of African descent are few. This obser-
vation is in contrast with the fact that for decades, underrepre-
sented minorities have shown higher mortality rates than most
other ethnic groups from cancer.64,65 Despite the fact that stud-
ies have shown that genetic susceptibility to tobacco carcino-

gens increases individual cancer risk,66 information on individ-
ual susceptibility to tobacco and gene-environment interaction
are lacking in subjects of African descent, mostly because they
are underrepresented in current research studies. Therefore, it is
not yet possible to determine whether association exists be-
tween a given genetic polymorphism and cancer risk in popu-
lations of African descent and the degree of interaction between
such polymorphisms and environmental exposure.

In the United States, studies have investigated reasons for the
underrepresentation of African-Americans in medical research.
Shavers-Hornaday and Lynch67 reviewed the literature and re-
ported that the reasons for underrepresentation of African-
Americans in research may be due to participant barriers such as
distrust; poor access; quality and utilization of health care; lack
of knowledge about clinical trials; language and culture; and
investigator barriers, such as failure to actively recruit partici-
pants because of preexisting beliefs regarding the ability to
recruit and retain participants; small number of minority re-
search investigators; limited relationships between minority
health care providers; and fears of how research results will be
interpreted. Nevertheless, the successful recruitment and partic-
ipation of African-Americans have been accomplished by some
investigators, although these studies are few. Efforts to increase
the number of represented minority participants in research
studies are warranted.

We have shown that for each gene, there are several different
cancer types that were studied. The majority of these include
breast, prostate, and lung cancers, which are reported to be
among the top four cancers with the highest incidence and
mortality rates in African-Americans.3 Although several genes
have been studied for various cancers, only one or two studies
per gene for each cancer site have been published, with the
exception of breast (CYP1A1 and CYP1B1), lung (GSTM1,
CYP1A1, and NQO1), and prostate (CYP3A4 A293G and

Fig. 1. Published case-control studies show a significant association of the CYP3A4 (A293G) homozygous variant and
prostate cancer in African-Americans. The shaded boxes represent the study-specific odds ratios, and horizontal lines
represent the confidence intervals; the size of the rectangles depict how each study is weighted in the analysis, and the
diamond represents the meta-OR and its width represents the CI for the meta-OR.
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CYP17). For the breast cancer studies that reported data for
African-Americans and Africans, the frequencies of the
CYP1A1 AA-specific and CYP1B1 V432L variants in the con-
trols were significantly different between the two populations.
Neither of the two populations showed statistically significant
associations of these genes and breast cancer. It is possible that
the difference in gene variant frequencies between the two
African-descent populations might be attributed to admixture
among African-Americans or to linkage disequilibrium with
other relevant genetic polymorphisms, suggesting that further
studies in African descent populations are needed.

For prostate cancer, a marginal association was observed for
CYP3A4 A293G and CYP17 and prostate cancer in African-
Americans, whereas an inverse relationship was reported for
CYP3A4 A293G in the single Nigerian study. Our findings
suggest that the differences in prostate cancer risk for CYP3A4
A293G between African-Americans and Africans and the con-
tribution of admixture in African-Americans needs further in-
vestigation. Studies of CYP3A4 A293G and prostate cancer in
whites report a marginally statistically significant increased
OR56,58; two studies on CYP17 in whites show no associa-
tion59,62; and one study reported an increased OR.61 Because of
the small number of case-control studies in our meta-analyses,
the reproducibility of the reported results for each cancer/gene
association could not be evaluated, which made it difficult to
interpret the reported results.

The CYP17 gene encodes an enzyme, which functions at key
points in steroid hormone biosynthesis and metabolism path-
ways,68 and the polymorphism in the 5�-UTR is thought to affect
hormone levels. High levels of androgens have been considered as
risk factors for prostate cancer.69 However, the relationship be-
tween the CYP17 variant and increased hormone levels is incon-
clusive.70 In 2003, a meta-analysis on the association between the

CYP17 variant and prostate cancer was published and included 10
studies conducted in Europe, Asia, and the United States (2404
prostate cancer cases and 2755 controls).71 The report showed that
the overall contribution of the CYP17 5�UTR polymorphism to
prostate cancer risk was not evident; however, there were distinct
differences based on ethnicity (European descent, OR: 1.04; 95%
CI, 0.92–1.18; Asian descent OR: 1.06; 95% CI, 0.66–1.71; and
African descent OR: 1.56; 95% CI, 1.07–2.28). There were three
studies in this meta-analysis, 113 cases and 134 controls. Although
our meta-analysis includes much larger population (5 studies, 277
cases, and 494 controls), the findings from the earlier study was
consistent with our findings and suggest a need for large-scale
investigation of the association of the gene variant and prostate
cancer risk in males of African descent. The gene product of
CYP3A4 is involved in the oxidation of a large range of substrates
including therapeutic drugs, steroids, fatty acids, and xenobiotics,
and similar to CYP17, also plays a role in androgen metabolism.72

It is biologically plausible that both these genetic polymorphisms
may play a significant role in prostate cancer risk. Further, larger
studies of the association of these gene variants and prostate cancer
in populations of African descent are warranted.

Overall our findings support the need for larger studies of
CYP1A1 Msp1 and breast cancer and CYP17 and CYP3A4
A293G and prostate cancer in African descent populations. The
development of large-scale, population-based databases that
document genetic variation in tobacco-related genes among
case and control subjects that represent populations of African
ancestry would serve as an important resource for cancer-
control and prevention programs. Our findings support the need
for additional genetic association studies of breast, prostate, and
lung cancers that include larger number of minority participants
and a better definition of African ancestry. Specifically, there is
a need to concentrate research on these three major cancers,

Fig. 2. Published case-control studies show a marginal significant association of the CYP17 5�UTR homozygous variant
and prostate cancer in African-Americans. The shaded boxes represent the study-specific odds ratios, and horizontal lines
represent the confidence intervals; the size of the rectangles depict how each study is weighted in the analysis, and the
diamond represents the meta-OR and its width represents the CI for the meta-OR.
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because incidence and mortality rank the highest among popu-
lations of African descent. Furthermore, specific research focus
is needed on genes with a sound hypothesis related to cancer
risk in subjects of African descent. Our review of the literature
reveals that the majority of studies have been conducted in the
United States, but still very few involve African or other pop-
ulations of African ancestry such as African-Caribbean. This
may be due to the limited financial and infrastructural resources
available to conduct these studies. Nevertheless, it is clear that
efforts to increase the number of studies in African descent
populations outside of the United States are warranted.
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