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Purpose: Autism spectrum disorders represent a range of neurodevel-
opmental disorders that have been shown to have a strong genetic
etiological component. Microarray-based comparative genomic hybrid-
ization and other molecular cytogenetic techniques are discovering an
increasing number of copy number variations in individuals with autism
spectrum disorder. Methods: We examined the yield of abnormal
microarray-based comparative genomic hybridization findings in our
laboratory for individuals referred for testing for autism spectrum dis-
order. We also examined the presence of autistic features among 151
additional individuals who were referred for microarray-based compar-
ative genomic hybridization testing for indications other than autism
spectrum disorder but had genomic alterations overlapping those found
in cases referred for autism spectrum disorder. Results: We identified
1461 individuals referred for testing for autism spectrum disorder, with
likely significant abnormalities reported in approximately 11.6% of
individuals analyzed with whole-genome arrays. These abnormalities
include alterations that encompass novel candidate genes such as
SNTG2, SOX5, HFE, and TRIP38. A minority of individuals with
overlapping abnormalities (19%) had autistic features, and many of the
copy number variations identified in our study are inherited (69% among
those found in individuals with autism spectrum disorder). Conclusions:
Our results suggest these copy number variations are one of multiple factors
contributing to the development of an autism spectrum disorder phenotype.
Additionally, the broad phenotypic spectrum of the patients with these copy
number variations suggests that these copy number variations are not
autism spectrum disorder-specific but likely more generally impair
neurodevelopment. Genet Med 2010:12(11):694–702.

Key Words: autism, ASD, microarray, CNV, neurodevelopment

Autism spectrum disorders (ASDs, OMIM 209850) describe
a range of behaviors that involve varying degrees of im-

paired language development, socialization, and interests. Indi-
viduals with autism, or autistic disorder, at the severe end of the
spectrum, have findings before 3 years of age in three catego-

ries: impaired reciprocal social interaction, impaired communi-
cation, and restricted, repetitive, or stereotyped behaviors. Individ-
uals with Asperger syndrome have all characteristic
impairments except for language deficits, manifesting before
3 years of age. For those with impairments in only two of the
three categories or impairments manifesting after 3 years of
age, a diagnosis of pervasive developmental delay (PDD) not other-
wise specified is given.1 ASD is estimated to have an incidence of
approximately 0.6% in the general population, although a recent study
suggests the prevalence of ASD may be increasing, nearing 1%.2,3

ASD occurs more commonly in males, with a recent study demon-
strating a 4.5:1 male-to-female ratio.2,3

The genetics of ASD are heterogeneous and not fully under-
stood. Only 10–20% of individuals with ASD have a known
etiology, which may include single-gene disorders and cytoge-
netic abnormalities.4 However, the heritability of autism is high,
with twin studies yielding estimates of 90% or higher for the
narrow phenotype of autism.5 This has prompted a search for
susceptibility loci, with linkage studies and genome-wide
screens yielding many candidates. Because of this large number
of loci and the differences in monozygotic and dizygotic con-
cordance rates, ASD is frequently considered to have a com-
plex, multigenic etiology with environmental influence.6

A variety of cytogenetic abnormalities has been detected in
patients with ASD, including rearrangements such as maternally
derived duplications of the Prader-Willi/Angelman syndrome
region on 15q11q13, estimated to be present in 1% of ASD
cases4,5,7; terminal deletions of 2q and 22q8; and deletions of
7q31.5 Smaller, novel deletions and duplications have been found
in large-population studies of individuals with ASD using microar-
ray-based comparative genomic hybridization (aCGH),9–13 includ-
ing some recurrent abnormalities, such as the microdeletion and
microduplication of 16p11.2.14–16 Detection rates for copy
number variations (CNVs) in these large studies are 7.0–11.5%
for detrimental abnormalities,9,12 7–10% for de novo abnormal-
ities in sporadic autism,14,17 and 11.6–12.5% for autism-specific
abnormalities.10,11 This detection rate increases when looking at
syndromic ASD (ASD cooccurring with other symptoms sug-
gestive of a genetic syndrome), with one study showing a
detection rate of 27.5%.13

Because of the finding of genomic imbalances in individ-
uals with ASD, aCGH has been recommended as a first-tier
test in the evaluation of patients with ASD, with the potential
of having the highest yield of any single, clinically available
test.9,18 In this report, we examine the yield of abnormal
aCGH findings in our laboratory for individuals referred for
testing for ASD. Additionally, we survey the presence of
autistic features in individuals with deletions and duplica-
tions overlapping those found in individuals with ASD to
elucidate the spectrum of neurodevelopmental abnormalities
associated with these CNVs.
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MATERIALS AND METHODS

Bacterial artificial chromosome microarray analysis
Microarray analysis was performed on some individuals in this

cohort (Table 1) with a bacterial artificial chromosome (BAC)
microarray (the SignatureChip®; Signature Genomic Laboratories,
Spokane, WA). The five versions of the microarray have increas-
ing coverage of the genome, and the array version used was
based on time of sample receipt. Version 1.0 was used from
March 2004 until October 2004, Version 2.0 until October
2005, Version 3.0 until May 2006, Version 4.0 until November
2007, and the SignatureChip Whole Genome (Signature-
ChipWG) until December 2009. Array coverage was designed
to target specific microdeletion/microduplication regions, sub-
telomeres, and pericentromeres. The more recent arrays have
increasing inclusion of more microdeletion/microduplication
regions and genes in important developmental pathways, with
the WG array adding coverage to the spaces between targeted
regions, with an average gap size between contigs of �1.6 Mb.
A comparison of the contents of versions 1.0-WG is available
at: http://www.signaturegenomics.com/clone_list.html. Mi-
croarray analysis was performed as described.19,20 Results
were visualized using our laboratory-developed computer soft-
ware program Genoglyphix (available at: http://www.signature
genomics.com/genoglyphix.html).

Oligonucleotide aCGH
Oligonucleotide-based microarray analysis was performed

on some of the individuals reported in this cohort (Table 1)
using a 105K-feature whole-genome microarray (SignatureChip
Oligo Solution™, custom designed by Signature Genomic Lab-
oratories, made by Agilent Technologies, Santa Clara, CA) as
described previously.21 This oligonucleotide-based microarray
was offered for clinical use beginning February 2008, and
physicians have been given the option of using this array or the
BAC-based microarray for their patients’ samples since that
time.

Fluorescence in situ hybridization
Abnormalities detected by aCGH were visualized by meta-

phase or interphase fluorescence in situ hybridization using one
or more BAC clones determined to be abnormal by aCGH.22,23

Subject identification
We searched our database of more than 5,000 genomic

abnormalities found in 22,680 samples submitted for clinical
testing for CNVs in individuals with indications for study
related to an ASD, including “autism,” “autistic,” “PDD,” “per-
vasive” (developmental delay), and “Asperger” (syndrome). A
genomic abnormality was considered potentially causative if it
met at least one of the following criteria: (1) de novo in origin,
(2) overlapping with another case in our database referred for
ASD, (3) overlapping with autism-associated genes or loci
reported in the literature, or (4) �1 Mb in size.

Evaluation of cases with abnormalities overlapping
those detected in individuals with ASD

We pursued further analysis of some of the loci deter-
mined to potentially causative in the individuals with ASD,
excluding abnormalities associated with a well-described
syndrome and abnormalities of the sex chromosomes. All
individuals with abnormalities of the same copy number state
(i.e., gain or loss) overlapping these autosomal loci were iden-
tified in our database. Clinicians were asked to supply informa-
tion about the presence or absence of ASD for all cases with
overlapping abnormalities, with the exception of individuals
younger than 15 months, who were too young to be evaluated
for ASD. Information about how a diagnosis of ASD was made
was not obtained.

RESULTS

Genomic abnormalities in individuals referred
for ASD

Between March 2004 and July 2008, 22,680 samples were
submitted for clinical testing. Of these, 1,461 had an ASD as an
indication for study. Abnormalities were reported in 180
(12.3%) of these cases. The rate of abnormalities reported was
higher with whole-genome arrays (16.8% for the BAC microar-
ray and 23.5% for the oligonucleotide microarray) compared
with 8.6% for Versions 1–4 of the targeted BAC microarray
(Table 1). Based on the criteria stated earlier in the text, the
abnormalities in 113 of these cases were determined to be
potentially causative, yielding a detection rate of 7.7% among

Table 1 Frequency of abnormalities found by different microarray platforms

Targeted BAC array
version 1–4

Whole-genome
BAC array

Whole-genome
oligonucleotide Total

P (targeted
vs. whole
genome)

P (whole-genome
BAC vs.

oligonucleotide)

Total cases analyzed 15,467 5,422 1,791 22,680

Number of cases with ASD
indication for study

881 482 98 1,461

Number of ASD cases with
abnormality reported

76 81 23 180 1.3 � 10�7 0.15

Abnormality rate 8.6% 16.8% 23.5% 12.3%

Number of ASD cases with
potentially causative
abnormalitya

46 54 13 113 9.4 � 10�6 0.60

Rate of potentially causative
abnormalitiesa

5.2% 11.2% 13.3% 7.7%

aSee “Materials and Methods”: subject identification for criteria used to classify abnormalities.
ASD, autism spectrum disorder; BAC, bacterial artificial chromosome.
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all cases referred for ASD (Table 1). Detection rates of these
abnormalities were not significantly different between the BAC
and oligonucleotide whole-genome arrays (P � 0.60, two-tailed
Fisher’s exact test), but detection rates were significantly greater
in the whole-genome arrays compared with earlier targeted
BAC array Versions 1–4 (P � 9.4 � 10�6, one-tailed
Fisher’s exact test). The abnormalities found in the remain-
ing 67 cases referred for ASD did not meet criteria for
potentially causative abnormalities (Table, Supplemental
Digital Content 1, http://links.lww.com/GIM/A122).

Of the 113 cases with potentially causative abnormalities (Table,
Supplemental Digital Content 2, http://links.lww.com/GIM/A123),
34 abnormalities were associated with syndromes that have been
well reported and associated with ASD, and these were excluded
from the second part of the study in which autistic features were
assessed in cases with overlapping abnormalities. Also excluded
were the 16 cases with abnormalities considered to be potentially
causative on the X or Y chromosome, leaving 63 cases with
abnormalities in 41 distinct autosomal regions in which to inves-
tigate ASD features in cases with overlapping abnormalities.

ASD in individuals with genomic alterations in
autosomal loci of interest

Information about ASD or autistic features was obtained for 151
individuals with overlapping abnormalities and without an ASD
indication for study, 29 of whom (19%) were found to have autistic
features or an ASD diagnosis (Table, Supplemental Digital Con-
tent 3, http://links.lww.com/GIM/A118). The altered genomic re-
gions of all cases with autistic features were compared to
determine the smallest region of overlap of their abnormalities,
some of which overlapped with previous reports of CNVs found
in ASD or included genes that have been associated with ASD
(Table 2). The CNVs surveyed were mostly inherited (41/59, or
69%, among autistic individuals, and 42/68, or 62%, among
nonautistic individuals).

DISCUSSION

Our survey of potentially causative CNVs detected in a series
of 1461 individuals referred for aCGH testing because of an
ASD or autistic features allows for a broader view of the
contribution of these CNVs to neurodevelopmental disorders.
For CNVs at most of these loci, autistic features were only
present in a subset of individuals, indicating these genomic
gains and losses are likely one of multiple factors contributing
to features of ASD. This phenotypic variability may also be
indicative of a more general contribution of the CNVs to a range
of neurodevelopmental disturbances, and other factors likely
influence the ultimate phenotypic penetrance and expressivity.
These CNVs may affect biological pathways that generally
impact neurodevelopment and manifest themselves phenotypi-
cally as developmental delays, mental retardation (MR), ASD,
or other neuropsychiatric disorders. Our survey also identified
CNVs not previously reported in association with ASD. Al-
though the gene content of some of these novel CNVs is
compelling, we have a limited number of cases in our study, so
further research is required to determine their pathogenicity.

Our results demonstrate CNVs at loci associated with ASD
do not always result in autistic features. These data also support
previous studies of recurrent microdeletions and microduplica-
tions, such as those at 15q13.324–29 and at the distal region of
1q21.1,30,31 in which autistic features are present in only a
subset of cases. Although formal ASD evaluations were not
performed for all patients in the study, we were able to ascertain

that some patients’ neurobehavioral profiles clearly did not raise
clinical suspicion of an ASD. For example, patients found to
have the 15q13.3 microdeletion who did not have autistic fea-
tures instead had developmental delays, seizures, language dif-
ficulties, and other behavioral issues such as attention-deficit
hyperactive disorder. In addition, some of these CNVs may be
inherited from an apparently normal parent,29,30,32,33 which fur-
ther suggests these CNVs are not always associated with neu-
rodevelopmental impairments; they demonstrate reduced pen-
etrance and variable expressivity. Therefore, it is difficult to
predict whether an individual with one of these CNVs will
develop autistic features, another neurodevelopmental disorder,
or neither, particularly in prenatal or asymptomatic cases.

Some of the CNVs identified in this study overlap with
those found in cohorts of patients with other neurodevelopmen-
tal disorders, further broadening the phenotypic spectra associ-
ated with these CNVs. For example, CNVs within DPP6 and
CNTNAP2, for which our study has one duplication and two
deletions, respectively, in autistic individuals, have also been
associated with schizophrenia and attention-deficit hyperactive
disorder without being present in a control population.34 CNVs
in schizophrenia cohorts have included duplications of 7q36.1
and 9p24.235; our study has one and two individuals, respec-
tively, with these duplications and autistic features. Microdele-
tions of 15q13.3 have been significantly associated with schizo-
phrenia,36,37 and we have seven individuals in our study with
this deletion and autistic features. Our laboratory has identified
a 16p12.2 microdeletion in a patient referred for schizophrenia
(Sahoo et al., in preparation) in addition to three in this study
with autistic features. ASD is frequently comorbid with MR,
and ASD is occasionally identified in individuals with genetic
syndromes not typically associated with ASD, similar to three
cases in this cohort referred for ASD who had the Williams
syndrome microdeletion at 7q11.2. This MR-ASD comorbidity
may be because individuals with reduced mental capacity can-
not compensate for social impairments caused by other genetic
or environmental factors38 or because MR and the cognitive and
social/behavioral impairments in ASD share common physio-
logical pathways.39,40 The phenotypic spectra associated with
these various CNVs suggest that these genomic alterations
likely contribute to abnormal neurodevelopment, but other
factors, both genetic and environmental, may be needed to
contribute to the development of an ASD or other specific
phenotype. This overlap between causes of ASD and other
neurodevelopmental disorders implicates an increasing num-
ber of potential genetic causes for ASD, and the causes likely
differ from one case to the next, complicating the identifi-
cation of any single factor.

The CNVs surveyed in our study include some with a novel
association with ASD, although further study of these genes and
replication in other cohorts will be necessary to determine
whether this association with ASD is significant. The CNVs
include a de novo deletion of SOX5 (OMIM 604975), a tran-
scription factor shown to play roles in chondroblast function
and oligodendrocyte differentiation and migration; a de novo
deletion of HFE, mutations of which are associated with the
autosomal-recessive HFE-associated hereditary hemochromato-
sis (OMIM 235200), TRIP38, whose function is unknown, and
multiple histone genes at 6p22.1; and a maternally inherited
deletion of SNTG2 (OMIM 608715), which encodes a scaffold-
ing protein shown to interact with neuroligins implicated in
autism.41 This deletion involving part of SNTG2 in a patient
with autistic features was inherited from a mother with a mild
personality disorder and was absent in a normal brother. As
these are only single cases, further studies in other populations
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may confirm this association with autism, show a more general
association with neurodevelopmental disorders, as we have
shown with other CNVs in this survey, or may show the CNVs
to be likely benign.

We also identified a recurrent microdeletion and microdupli-
cation at 16p12.2, although population data suggest these re-
current CNVs may not be clinically significant. This microde-
letion has been identified in controls (20/6712),83 and the
frequency is not significantly different than either the frequency
among cases referred to our laboratory for clinical aCGH testing
(33/16,773) or among the subset of these cases referred for
an ASD (2/580). This microduplication had a frequency of
14/6,712 in the same control population,83 which is not signifi-
cantly different than the frequency in cases referred for aCGH
testing (22/16,773) or the subset of cases being tested for ASD
(1/580). This example illustrates a potential limitation to this study,
as truly benign variants may be identified and in the absence of
control data may be difficult to implicate or reject as candidates.
Conversely, some of the CNVs that are not categorized as poten-
tially causative may be rare loci that predispose to ASD, as the
criteria used in this study are a screening tool and may eliminate
some smaller or inherited abnormalities that have a legitimate
connection with ASD. Larger, independent studies are required to
identify and replicate the association between any specific CNV
and ASD.

Despite the studies that suggest high heritability for autism
and, therefore, a strong genetic contribution, the interaction
between genetic factors and ASD is not fully understood. Be-
cause of the absence of common genetic factors in individuals
with ASD, and as a result of an analysis of family history data,
a multigenic model is the commonly accepted model for ASD.42

If ASD is truly multigenic then a CNV could be one of several
genetic factors required to lead to ASD. These CNVs could be
in normal individuals in the population and, therefore, may be
unrecognized in studies of de novo abnormalities or “autism-
specific” changes. It is possible that some of the small, recur-
rent, inherited abnormalities in this cohort, such as the 4q28.3
microdeletion or the 16p12.2 microdeletion and microduplica-
tion, could represent one of these common CNVs that can
contribute to ASD when other unknown factors are present. The
paucity of obvious results in all these searches for common
CNVs in ASD suggests that the contributory factors are varied,
so it may be rare to find multiple families with the same
abnormalities.

An increasing number of microdeletions and microduplica-
tions are being reported in association with ASD, and the nature
of the association between the CNV and ASD, whether it is
causative, contributory, or potentially benign, is slowly being
elucidated. Although some genomic disorders have been associ-
ated with a specific neurobehavioral profile,43–45 and the relative
contribution that other CNVs, such as 16p11.2 microdeletions and
microduplications, to ASD is being described,11,14,16,46,47 the roles,
if any, that most CNVs play in ASD etiology have not been
defined. Some of these CNVs are implicated in disease, even
when inherited from a normal parent,24,30 a paradigmatic shift
from traditional cytogenetic orthodoxy.32,48,49 Furthermore,
these CNVs may be present in individuals with a spectrum of
neurodevelopmental impairments, which suggests they play a
general role in altering brain development. In any individual
with ASD, multiple, varied factors, one of which may be a
CNV, likely contribute to the phenotype.
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