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Purpose: Evaluation of genomic tests is often challenging because of
the lack of direct evidence of clinical benefit compared with usual care
and unclear evidence requirements. To address these issues, this study
presents a risk-benefit framework for assessing the health-related utility
of genomic tests.Methods:We incorporated approaches from a variety of
established fields including decision science, outcomes research, and health
technology assessment to develop the framework. Additionally, we con-
sidered genomic test stakeholder perspectives and case studies. Results:
We developed a three-tiered framework: first, we use decision-analytic
modeling techniques to synthesize data, project incidence of clinical events,
and assess uncertainty. Second, we defined the health-related utility of
genomic tests as improvement in health outcomes as measured by clinical
event rates, life expectancy, and quality-adjusted life-years. Finally, we
displayed results using a risk-benefit policy matrix to facilitate the inter-
pretation and implementation of findings from these analyses. Conclusion:
A formal risk-benefit framework may accelerate the utilization and prac-
tice-based evidence development of genomic tests that pose low risk and
offer plausible clinical benefit, while discouraging premature use of tests
that provide little benefit or pose significant health risks compared with
usual care. Genet Med 2010:12(11):686–693.
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Few genomic testing technologies have reached routine clin-
ical practice or been incorporated into clinical guidelines to

date.1–4 Nonetheless, a multitude of genomic tests are marketed
to consumers and physicians, and genome-wide assays are
available to consumers for several hundred dollars.5 These
assays, coupled with the rapid growth of somatic gene expres-
sion profiling in oncology, present a significant challenge to
clinicians and policy makers seeking to establish clinical prac-
tices that maximize benefit for patients while minimizing harm.

The efficient and appropriate translation of genomic discov-
eries into clinical practice is particularly challenging because of
an interrelated combination of factors.6 First, there is a notable

lack of comparative effectiveness data for genomic applications
because of regulatory and reimbursement policies that neither
require nor incentivize investment in such studies.7–9 Conse-
quently, although randomized trials have been initiated for
select genomic applications such as CYP2C9/VKORC1 testing
with warfarin therapy,10,11 CYP2D6 testing with antidepressant
use,12 and gene expression profiling in breast cancer treat-
ment,13 there are generally few prospective comparative
genomic tests evaluations planned or underway.14

Second, the ease of market access for genomic tests makes
the aforementioned lack of evidence more problematic.15,16 For
example, when investigators from the National Institute of
Mental Health reported an association between two genetic
variants and suicidal ideation in patients taking citalopram,17

within a week, a genomic testing company announced plans to
offer testing to “help to reduce a recently announced spike in
suicide rates among US youth.”18 This situation is partly related
to regulatory policy, but is also related to the fact that providing
information about genomic susceptibilities does not require
specialized medical facilities or training, and involves very little
direct risk of immediate harm to patients.

Finally, there is a lack of consensus on evidence require-
ments or thresholds for genomic test evaluation.19 Some stake-
holders accept the findings of retrospective analyses and clinical
plausibility, whereas others expect controlled clinical trial
data.20,21 For example, in the case of the anticoagulant warfarin,
variants of the genes CYP2C9 and VKORC1 are clearly asso-
ciated with lower dose requirements, but no study to date has
definitively demonstrated that using this information improves
patient outcomes.22 Alternatively, warfarin patients concomi-
tantly taking amiodarone also require lower warfarin dosing
(because of inhibition of CYP2C9), and doing so is considered
standard of care.23 This lack of consistency in evidence require-
ments, in addition to the other factors outlined above, creates a
roadblock on the translational pathway for genomic tests.

The Secretary’s Advisory Committee on Genetics, Health,
and Society recently issued a report15 emphasizing the impor-
tance of assessing and weighing potential harm against potential
benefit, so that patients do not inadvertently forgo real benefit
because of small or hypothetical harms. Additionally, regula-
tory authorities have shown heightened interest in the use of
quantitative approaches to assess risk-benefit tradeoffs for phar-
maceuticals.24–31 A recent Institute of Medicine study advised
that Food and Drug Administration (FDA) “develop and con-
tinually improve a systematic approach to risk-benefit analy-
sis.”32 FDA is currently evaluating various approaches to incor-
porate risk-benefit analyses into their assessment processes.
Although approaches have been developed to incorporate indi-
rect evidence (e.g., noncomparative data) in a semiquantitative
fashion, and decision-analytic techniques are beginning to be
applied in the assessment of genomic tests,4,33 quantitative
assessment of risk-benefit tradeoffs, and the uncertainty sur-
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rounding them, have not been explicitly included in genomic
test evidence recommendations to date.

We believe that there is a significant opportunity to use
existing decision modeling methods to synthesize genomic,
clinical, epidemiological, and patient outcome data to explicitly
evaluate risk and benefit trade-offs of genomic tests, and the
uncertainty surrounding their utility. The objective of this study
was to develop a systematic and comprehensive approach to
help clinicians and policy-makers estimate health outcomes of
genomic testing in the absence of definitive data. The novel
aspect of the risk-benefit framework described in this article is
the synthesis of approaches from a variety of fields to system-
atically and quantitatively evaluate the risk-benefit profile of
genomic tests—the use of decision modeling, the projection of
multiple clinical outcomes (including quality-adjusted life-years
[QALYs] as a summary measure of clinical utility), and a
recommendation framework that enables utilization of the in-
formation generated. These estimates are intended to help guide
decisions about clinical test use and coverage and provide a
framework for encouraging practice-based evidence develop-
ment for tests with plausible net health benefit.

METHODS

The risk-benefit framework presented herein is based on
work from the fields of decision science, outcomes research,
and health technology assessment. Traditional evidence-based
processes have generally relied on direct evidence of clinical
utility (e.g., data from randomized controlled trials). Recently,
however, advisory bodies have recognized that direct evidence
will not always be available to answer questions of interest. For
example, the U.S. Preventive Services Task Force (USPSTF)
developed an approach for evaluating indirect evidence with a
focus on evaluating net health benefit, and the uncertainty
around estimates.34,35 The Task Force constructs a “chain of
evidence” within an analytic framework and assesses the level
of certainty based on specific questions. If the certainty of net
benefit is moderate or high, the magnitude of benefit is assessed,
and modeled event rates are provided in an outcomes table. For
example, Nelson et al.36 used this approach to evaluate BRCA
mutation testing for breast and ovarian cancer susceptibility,
although a summary measure of the net health benefit was not
determined.

More recently, the U.S. Centers for Disease Control and
Prevention has sponsored the Evaluation of Genomic Applica-
tions in Practice and Prevention (EGAPP) initiative.37 EGAPP’s
methods are analogous to that of the USPSTF and involve use
of an analytic framework to assess indirect evidence. Three of
the seven EGAPP evidence reports commissioned to date have
explicitly conducted decision-analytic modeling.38 In two cases,
evidence supporting a valid association between variants and
clinical outcomes was lacking, and the models were used in an
exploratory capacity.39,40 In the other case, the model was used
to assess efficiency of case detection but not patient outcomes.41

A summary measure of net health benefit was not calculated in
any of these cases.

The private sector has also pursued analogous, evidence-
based approaches. Notably, the BlueCross BlueShield Associ-
ation’s Technology Evaluation Center (TEC) has conducted
extensive evidence-based evaluations of genomic tests.42 The
TEC uses five criteria to evaluate health technologies such as
genomic tests: (1) it must have regulatory approval, (2) the
evidence must permit conclusions regarding its effect on health
outcomes, (3) it must result in an improvement in net health
outcomes, (4) it must be at least as good as current alternatives,

and (5) it’s benefits must be attainable outside of the investiga-
tional setting. Quantitative evaluation of indirect evidence has
not been used for TEC assessments to date.

In summary, although approaches to date have incorporated
various aspects of a quantitative risk-benefit framework, they
have not included a formal and explicit approach to assessing
indirect evidence, a summary measure of risk-benefit, and a
decision-making framework that synthesizes this information.
Below, we propose a quantitative risk-benefit approach that
incorporates these aspects within a single framework. We used
stakeholder feedback and previous experience with case studies
and regulatory science to inform development of the frame-
work.19,43–45

Decision-analytic framework
Decision-analytic modeling provides an explicit framework

for evaluating technologies by incorporating data from various
sources in a quantitative and transparent fashion and comparing
the likely results of technology use versus the next best alter-
native. By assessing the incremental outcomes compared with
the next best alternative (e.g., no genomic testing), the “oppor-
tunity cost” of genomic testing can be captured. Weinstein and
Fineberg46 characterize the decision-analytic approach as (1)
identifying and bounding the decision problem, (2) structuring
the decision problem over time, (3) characterizing the informa-
tion needed to inform the structure, and (4) choosing a preferred
course of action. This approach is advantageous in that there is
an explicit framework for evaluating risks and benefits, decision
makers must identify quantitative estimates of risks and bene-
fits, the approach can be applied to a wide variety of technol-
ogies, and complexity and timing of analyses can be suited to
the decision-making task.24

To illustrate the decision-modeling process, we consider a
hypothetical cohort of patients initiating long-term warfarin
therapy for the prevention of thromboembolic events. During
the warfarin initiation period, determination of the dose required
to achieve an optimal level of anticoagulation can be challeng-
ing. Clinicians monitor the international normalized ratio (INR),
a measure of anticoagulation status that can serve as a surrogate
marker for adverse events. INR values between 2 and 3 are
considered within therapeutic range for most patients—INR
values above 3 are associated with higher risk of serious bleed-
ing events, whereas INR values below 2 are associated with
increased risk of thromboembolic events. Most patients are
initiated on 5 mg warfarin per day, and clinical and demo-
graphic variables that indicate warfarin sensitivity such as older
age, drug interactions, or comorbidities are used to adjust doses
downward. Information about the patients’ CYP2C9 and
VKORC1 gene status (hereafter referred to as “genotype-
guided” dosing) also could be incorporated in the initial dose
selection. Below, we demonstrate how decision modeling can
be used to quantitatively evaluate the risks and benefits of each
approach based on an analysis conducted as part of this risk-
benefit framework project, as well as the results of a previously
published warfarin decision analytic model.43,47

Decision structure, data sources, and outcomes
At the core of the risk-benefit framework is what could be

described as a clinical disease-based model. The goal of this
approach is to incorporate relevant clinical effects attributable
to a genomic test and subsequent actions to estimate impact on
patient outcomes. A schematic of the process is depicted in
Figure 1.

Consider this approach in the context of genomic testing to
guide warfarin therapy described earlier. First, clinicians re-
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ceive genomic test results reporting patients’ CYP2C9 and
VKORC1 genomic status. Next, informed by the test results, an
estimated initial dose is calculated and warfarin therapy is
administered—assuming the clinician and patient agree with the
suggested dosing. During the subsequent weeks, clinicians will
monitor INR and adjust warfarin dose in response. The goal is
to achieve stable INR values in therapeutic range, and a stan-
dard measure of anticoagulation management success is the
time in therapeutic range over the first month (or months) of
warfarin therapy.48

We developed a risk-benefit analysis for warfarin pharma-
cogenomic testing based on extensive interaction with vari-
ous stakeholders, particularly practicing anticoagulation cli-
nicians.47 Because of their familiarity with INR as an
outcome, clinicians indicated that a model that projected
bleed and clot events based on INR during the first 1–3
months of warfarin therapy would be most useful to assess
the potential net benefit of testing (Fig. 2). The probabilities
of achieving different levels of INR control ideally would be
informed by the results of comparative, randomized clinical

trials. In this instance, we used results from the highest
quality randomized controlled trial available to date con-
ducted by Anderson et al. (N � 200).49 Additionally, the
relationship between time in INR range and the risk of
clinical events can be derived from longitudinal cohort stud-
ies as was done with data from van Walraven et al.50 in the
warfarin model under consideration. These probabilities are
then multiplied to compare the overall likelihood of having
specific events within each dosing strategy.

We estimated in a cohort of 10,000 patients observed for the
first month of warfarin therapy, approximately 44 and 45 pa-
tients would experience serious bleeding events and approxi-
mately 27 and 28 would experience serious thromboembolic
events in the genotype-guided and standard dosing strategies,
respectively.47

Uncertainty: Scenario and sensitivity analysis
The decision structure described above does not allow tradi-

tional statistical analyses and hypothesis testing because not all

Fig. 1. Schematic diagram of disease-based model.

Fig. 2. Warfarin pharmacogenomics decision tree.
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data are derived from the same study, nor typically obtained at
the patient level. However, it is possible to explicitly evaluate
uncertainty—particularly related to lack of data. To accomplish
this, scenario analyses can be conducted in which model inputs
are varied over plausible ranges, and the impact on results
assessed—for instance in “most likely,” “best case,” and “worst
case” scenarios. Each model input can be varied individually to
identify inputs that drive the analysis and are associated with the
greatest uncertainty in the results.

For example, in the decision tree depicted in Figure 2,
uncertainty about the proportion of time patients spend within
the target INR range in the first month of warfarin therapy could
be explored by examining the modeled outcomes of a plausible
range of values. Perhaps in the “most likely,” “best,” and “worst”
scenarios, patients are within the INR target range for 66%, 82%,
and 50% of the time, respectively. Downstream outcomes of these
times in target INR range can be modeled to see how use of
genotype-guided dosing compares to standard dosing under each
assumption. In the model, the “most likely,” “best,” and “worst”
genotype-guided dosing scenarios are estimated to result in ap-
proximately 44, 40, and 52 serious bleeding events and 27, 24, 28,
serious thromboembolic events, respectively.47

Additionally, overall uncertainty related to data inputs can be
evaluated using probabilistic sensitivity analysis, in which dis-
tributions are assigned to the model inputs, and Monte Carlo
simulation is used to repeatedly draw sets of model inputs.51,52

Although the use of probabilistic sensitivity analysis is consid-
ered best practice for health outcomes modeling, use of indi-
vidual parameter sensitivity analyses and multiple-parameter
scenario analyses may be more intuitive for stakeholders.53,19

Summary measure of health-related utility
Analogous to the USPSTF approach to presenting the results

of indirect evidence assessments, we suggest presenting both
benefits and risks in an outcomes table, as well as reporting
ranges of results obtained from evaluations of uncertainty and
assumptions, as described above.35 However, assessing the
overall balance of risks and benefits can be more challenging.
Clinical events differ in their severity and frequency, and pro-
jecting their impact without an explicit framework or summary
outcome measure is difficult. For example, considering the
warfarin therapy cohort, should serious bleeding events expe-
rienced or thromboembolic events avoided receive a greater
weight? Projected life expectancy is an important summary
measure of mortality and should be assessed in all risk-benefit
analyses for which there is uncertainty about clinical utility.
However, life expectancy does not account for patient morbidity
and quality of life impacts.

Quality-adjusted life-years
The challenge of comparing different types of outcomes

across different diseases and interventions has been addressed
in health outcomes research using the metric of the QALY.54

The use of QALYs as the preferred measure in health outcomes
research has been established in the United States and a variety
of other countries.54,55 In addition, the recent Institute of Med-
icine Committee to Evaluate Measures of Health Benefits for
Environmental Health and Safety Regulation in the United
States stated that analyses that “integrate morbidity and mortal-
ity impacts in a single effectiveness measure should use the
QALY to represent net health effects.”56

The QALY represents an adjustment to length of life for the
estimated quality of life. Quality of life is measured with a
preference scale or index, where 0 represents the value or
“utility score” for death and 1 represents normal “full” health.

Thus, 10 years of life expectancy at a utility of 0.5 is equivalent
to 5 years with full health. There are several approaches to
measuring preferences including time trade-off, standard gam-
ble, and population-weighted surveys.54 These measures eval-
uate physical, mental, emotional, and social functioning do-
mains to varying extent and can be general or condition specific.

Grosse and Khoury suggested using the term “utility” to
include both “clinical utility” (health-related outcomes) and
“social utility” (primarily psychological effects).57 We propose
defining the utility of genomic testing from a health policy
perspective as an improvement in life expectancy or quality of
life for patients and their families, and term this measure
“health-related utility” (HRU). The psychological impacts of
testing, whether benefits or harms, would be included if they
have a measurable impact on patient’s health-related quality of
life, defined in general as mental, emotional, or social function-
ing related to their knowledge of genomic test results. In this
construct, clinical events can be assessed through their impact
on patient life expectancy (i.e., attributable mortality) and mor-
bidity (i.e., patient quality of life). This definition combines
attributes of “clinical utility” and “social utility” but does not
include effects, such as impact on diagnostic thinking, if there is
no associated influence on clinical outcomes or quality of life.

Returning to the warfarin case study, assessment of the
potential impact of clinical events on life expectancy and
QALYs requires the tracking of events, mortality, and quality of
life over the lifetime of a patient cohort, which is commonly
achieved in decision modeling through the use of Markov
models.58 We previously developed a warfarin pharmacog-
enomics health policy model using such techniques and esti-
mated in the base-case analysis that testing could lead to an
improvement in QALYs of 0.003 (1 day).43 Notably, uncer-
tainty analyses indicated that the difference in QALYs could
range from �0.005 to �0.010. These findings are generally
consistent with the results of similar analyses recently con-
ducted by Eckman et al.59 and Patrick et al.60

Limitations of QALYs
There are several limitations to the use of QALYs as a

summary measure of HRU for genomic tests. First, there are
limited data on the impact of testing on patient and family
quality of life or preferences.61 Second, measuring the psycho-
logical impacts of testing using a preference approach is chal-
lenging, because most instruments likely are not sensitive, and
disease and test specific instruments will need to be devel-
oped.61 Third, there is significant uncertainty associated with
most preference estimates, further complicating interpretation
of the results of risk-benefit analyses. Fourth, different individ-
uals will vary in their utility ratings of the same health state, so
clinical guidelines should allow clinicians flexibility to address
individual preferences, although population-level clinical poli-
cies will generally aim to consider average or typical prefer-
ences.

Many of these concerns have been noted by genomic test
stakeholders in the literature.19 Specifically, we found that while
stakeholders are receptive to the concept of using decision-
analytic methods to evaluate genomic tests, many have concerns
about lack of consistency in the methods used to elicit prefer-
ences, the ability of QALYs to capture the psychological value
of test results, and the use of QALYs as a summary measure of
HRU.19 Perhaps most importantly, stakeholders noted that use
of QALYs as a summary measure of HRU is likely to lead to
arguments about preference elicitation methods and could ulti-
mately limit the use of decision-analysis to evaluate genomic
tests.19
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These limitations highlight the need for ongoing stakeholder
dialogue in relation to the development and use of decision-
analytic methods to evaluate genomic tests, consideration of the
impact of patient treatment preferences on health outcomes, and
the importance of outcome measures in addition to QALYs. To
help address these issues, we suggest that analyses report a
multitude of health outcomes, including (1) proportion of pa-
tients with a reclassified risk status, (2) proportion of patients
indicated to receive an alternative treatment strategy, (3) pro-
portion of patients likely to choose the alternative treatment (4)
clinical events (benefits and harms), (5) life expectancy, and (6)
quality-adjusted life-expectancy (Table 1).

Risk-benefit policy matrix
Health policy evaluations of genomic tests are complex and

warrant a variety of clinical, social, and political considerations.
The framework established above serves to anchor one of these
domains, HRU. Given the results of a quantitative risk-benefit
analysis, in addition to other factors, decision-makers are faced
with three options: (1) recommend the technology, (2) reject it,
or (3) wait and collect more data.

In reference to the latter option, there has been increasing
regulatory interest in the use of “coverage with evidence devel-
opment” (CED). CED programs provide patients access to
technology while developing evidence to inform future policy
decisions.62,63 The U.S. Medicare program has recently applied
this approach in other areas where there is limited evidence
available (e.g., surgical interventions and medical devices). In
such programs, health care payers agree to cover medical ser-
vices or technologies under the condition that beneficiaries
enroll in studies or registries to collect additional data on the use
and outcomes of the therapy. Thus, CED provides a process for
moving technologies along the translational pathway. For ex-
ample, based on recommendation from the Medicare Evidence
Development & Coverage Advisory Committee, Centers for

Medicare and Medicaid Services (CMS) recently implemented
a CED policy for pharmacogenomic testing with warfarin
therapy.64

To implement CED in a manner consistent with facilitating
the appropriate translation of genomics into health care, a “tech-
nology triage” mechanism is needed to identify potential can-
didates. We believe quantitative risk-benefit assessment can
serve this important role. Risk-benefit policy matrices can be
used to categorize genomic tests based on potential magnitude
of HRU, and the uncertainty around these estimates. Our draft
matrix (Fig. 3) provides five recommendation options, aiming to
discourage use (or clinical development) of tests that have a
reasonable chance of overall “negative” HRU, while encourag-
ing entry into a “postmarketing” development pathway for tests
that offer substantial promise but lack evidence of HRU.

For example, in the warfarin case study, model estimates
indicated that genotype-guided dosing would result in a small
increase in QALYs relative to standard dosing, but probabilistic
sensitivity analyses estimated that genotype-guided dosing
would increase QALYs in 84% of simulations and decrease
QALYs in 16% of simulations.43 Given these findings indicate
an approximately “neutral” risk-benefit profile and a “moder-
ate” degree of uncertainty, genotype-guided warfarin dosing
could be classified as “use with evidence development.” The
conclusion reached by the CMS in August of 2009.65 Although
formal decision modeling did not appear to have a direct role in
this decision, CMS “considered the evidence in the hierarchical
framework of Fryback and Thornbury where Level 2 addresses
diagnostic accuracy, sensitivity, and specificity of the test;
Level 3 focuses on whether the information produces change in
the physician’s diagnostic thinking; Level 4 concerns the effect
on the patient management plan and Level 5 measures the effect
of the diagnostic information on patient outcomes.”66 Although
the evidence considered was similar, a formal risk-benefit ap-
proach may have provided greater transparency in regard to

Table 1 Risk-benefit outcomes table: Examples of potential outcomes for different types of genomic tests

Incremental results for
testing vs. comparator
strategy

Type of genomic test

Pharmacogenomics Disease risk Newborn screening

Proportion of patients with a
reclassified risk status

% patients with reclassified risk status % individuals with reclassified
risk status

% children with reclassified risk
status

Proportion of patients
indicated to receive an
alternative treatment
strategy

% patients with dose or drug change % individuals initiating lifestyle
change or preventative
interventions

% children receiving medical or
dietary intervention

Proportion of patients likely
to choose the alternative
treatment

% patients choosing indicated treatment
strategy

% individuals choosing
indicated lifestyle change or
preventative intervention

% children receiving indicated
medical or dietary
intervention

Incidence of clinical events:
benefits and harms
(including NNT, NNS,
NNB, NNH)

Serious adverse drug reaction, myocardial
infarction, stroke, cancer recurrence

Myocardial infarction, stroke,
cancer recurrence

Growth, mental functioning

Life expectancy Life years Life years Life years

Quality of life (and patient
preferences)

Impact of clinical events on quality of
life

Impact of increased fear vs.
empowerment

Impact of “right to know” vs.
harm from uncertainty in
diagnosis or treatment

Health-related utility QALYs QALYs QALYs

NNT, number needed to treat; NNS, number needed to screen; NNB, number needed to benefit; NNH, number needed to harm; QALYs, quality-adjusted life-years.
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synthesis across levels of evidence, and quantification of the
potential net benefit and associated uncertainty. Uncertainty
analyses also could highlight the evidence gap in regard to the
effectiveness of testing, and the value of conducting a random-
ized controlled trial.

The recommendation categories we propose for the risk-
benefit framework offer a starting point for stakeholders to
develop dialogue about the merits of genomic tests. As with
most policy frameworks, we expect this approach to evolve over
time and be modified as needed by individual stakeholder
groups. For certain stakeholders, other considerations such as
cost and equity will be important and should be evaluated.
Indeed, in our previous study of stakeholder perspectives, pay-
ers indicated that tests with lower budget impacts might be
evaluated using a simpler matrix primarily focused on potential
harm, whereas more expensive tests or ones that have larger
downstream cost impacts would require a careful evaluation of
risk-benefit as well as cost-effectiveness.19

Challenges
In some cases, formal risk-benefit assessment of genomic

tests will be limited by lack of sufficient or valid data to make
utilization recommendations. In these cases, health outcomes
modeling can be used to conduct exploratory evaluations to
identify key parameter values that are required to produce HRU.
For example, this approach was taken in the recent EGAPP
evidence reports evaluating CYP-P450 testing for antidepres-
sant therapy and ovarian cancer susceptibility testing.39,40 In the
CYP-P450 for antidepressant therapy evaluation, a decision
analysis was conducted to examine under which conditions
genetic testing could lead to a better clinical outcome at 6
weeks, with the outcome of proportion responders.40 In the
ovarian cancer susceptibility testing evaluation, a Markov
model with a lifetime horizon was used to assess what combi-
nations of inputs would be required to achieve a target of 20%
reduction in cancer mortality.39

Quantitative evaluation of genomic tests is also complicated
by their diverse applications,67 and distinct ethical and policy
implications, based on predictive value and the availability of
treatment for patients who test positive.68 In this sense, the risks
and benefits of genomic testing extend beyond the usual end-
points measured in health technology assessment. Consider-
ation of risks like stigma and discrimination, false reassurance,
opportunity costs, and use of unproven therapies must be
weighed against potential benefits of genomic diagnosis to
family members, and the value placed on risk information by
both patients and providers.57,68–72 Whether these risks and

benefits should drive health care decision-making is an open
question, to be determined in part by their relative weight
compared to medical outcomes of testing.

Finally, given the required assumptions and potential com-
plexity of analyses, stakeholder acceptance of a modeling ap-
proach is likely to be a major challenge.72,73 To address this
issue, collaboration with stakeholders to specify optimal ap-
proaches, interpretation, and recognition of limitations is critical
to the success of a genomic testing risk-benefit framework. Such
efforts are underway, but additional work is needed in this
area.19 Issues that need to be addressed include (1) data to be
included in risk-benefit analyses, (2) outcomes generated by the
analyses, (3) a decision-making framework and corresponding
thresholds, and (4) transparency, acceptance, and communica-
tion of the results of the analyses.

Summary
We believe a formal risk-benefit framework is useful for

evaluating genomic tests for several reasons. First, although it
must be recognized that the gold standard for direct evidence of
HRU of genomic tests will come from prospective randomized
controlled clinical trials, there is an opportunity to use quanti-
tative risk-benefit analysis to derive at least preliminary esti-
mates of HRU. This approach could be particularly valuable for
genomic tests with a clear course of action that has been well
studied.

Second, there will be a significant shortage of direct evidence
of HRU for genomic tests in the near future. In some cases,
indirect evidence of a favorable risk-benefit profile will suffice
to recommend a test for use in clinical practice. Formal risk-
benefit analysis offers a pragmatic approach to assessing HRU
in a reasonably timely yet systematic manner. Thus, safe and
potentially valuable genomic technologies will not be withheld
from clinical use because of lack of direct evidence.

Third, risk-benefit analysis provides a tool to quantify the
risk of interventions that result from testing in relation to
potential benefit. Specifying risks can also aid in communicat-
ing such risks to providers and policymakers, thus protecting
patients’ and the public’s health.

Finally, there will be significant uncertainty surrounding the
HRU of most genomic tests. Scenario analysis and formal
sensitivity analysis provide a mechanism for the quantification
of uncertainty in HRU. Risk-benefit analyses also provide a
foundation for assessing the value of additional research to
reduce uncertainty and guide prioritization of comparative ef-
fectiveness research in genomics.

Fig. 3. Risk-benefit policy matrix.
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In summary, quantitative risk-benefit analysis provides a
valuable tool for prioritizing genomic tests for development in
the translational pathway. Specifically, tests that appear to have
a reasonable risk profile, but with significant uncertainty with
regard to the magnitude of benefit, can be recommended for use
in clinical practice in CED programs. These strategies provide
a viable route to generating evidence of HRU in the de facto
“postmarketing” environment of genomic tests. This approach
could serve as a foundation for assessment of population health
impacts, regulatory decisions, health economics studies, and for
the incorporation of the personal utility of prognostic informa-
tion.
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