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Purpose: We present an approach to prioritize single nucleotide poly-
morphisms for further follow-up in genome-wide association studies of
type 2 diabetes. Method: The proposed method combines both the use
of open data access from two type 2 diabetes-genome-wide association
studies (granted by the Diabetes Genetics Initiative and the Welcome
Trust Case Control Consortium) and the comprehensive analysis of
candidate regions generated by the freely accessible ENDEAVOUR
software. Results: The algorithm prioritized all genes of the whole
genome in relation to type 2 diabetes. There were six of 1096 single
nucleotide polymorphisms in five genes potentially associated with type
2 diabetes: tachykinin receptor 3 (rs1384401), anaplastic lymphoma
receptor tyrosine kinase (rs4319896), calcium channel, voltage-depen-
dent, L type, alpha 1D subunit (rs12487452), FOXO1A (rs10507486
and rs7323267), and v-akt murine thymoma viral oncogene homolog 3
(rs897959). We estimated the fixed effect and P values of each single
nucleotide polymorphism in the combined dataset by Mantel-Haenszel
meta-analysis and we observed significant P values for all single nu-
cleotide polymorphisms except for rs897959 at v-akt murine thymoma
viral oncogene homolog 3. Conclusion: The proposed strategy may be
used as an alternative tool for optimizing the information of the nearly
500,000 gene variants in which markers with modest significant P value
for disease association are currently disregarded. Additionally, the said
single nucleotide polymorphisms may be incorporated into the replica-
tion of the multistage design involved in the genome-wide association
studies. Genet Med 2009:11(5):338–343.
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Genome-wide association studies (GWAs) using a dense
map of single nucleotide polymorphism (SNP) markers

enable scientists to detect common genetic variants that influ-
ence susceptibility to complex diseases, enlightening both dis-
ease mechanisms, and the translation of this knowledge into
clinical benefit for diagnosis, prognosis, and therapy.

Based on common human genetic variation information pro-
vided by the HapMap Project, the whole-genome scans using

microarrays with 500,000 SNPs are making remarkable progress in
the understanding of the genetic architecture of human diseases,
including the constellation of complex diseases such as type 2
diabetes, dyslipidemias, central obesity, arterial hypertension,
and fatty liver disease that gather in the metabolic syndrome
among others.

Interestingly, one of the major outcomes of these studies is
the elucidation of important aspects of disease pathogenesis
through the discovery of novel genes or genomic regions pre-
viously unrelated to a disease. For instance, researchers from
the Diabetes Genetics Initiative (DGI),1 the Finland-United
States Investigation of NIDDM Genetics (FUSION),2 and the
Welcome Trust Case Control Consortium (WTCCC)3 reported
the results of a consortium GWA study revealing the role of
several novel loci such as CDKN2B, CDKAL1 and IGF2BP2 in
the genetic risk of type 2 diabetes.

Surprisingly, data about previous published loci associated
with type 2 diabetes were not sufficiently powerful to reach a
significant P value in individual scans. For example, variants at
SLC30A8 and PPARG were significantly associated with type 2
diabetes only when pooling all the GWAs data, whereas in a
single genome scan (DGI), no gene showed a positive signal
(P value: 0.92 and 0.83, respectively). Thus, this may suggest
that GWAs are still underpowered to find SNPs with small
effect size.

In this regard, a challenging issue is the selection of “statis-
tically significant” associations with those SNPs that show the
most extreme P values (as small as 10�7)4 followed by a robust
replication that enables identification of a true positive signal. In
principle, this approach strongly increases the weight of se-
lected markers and has the virtue of avoiding the potential of
false positive results. However, a worrying drawback is that if
the P value for association for a given SNP in the initial study
is not sufficiently small, the SNP will not be carried forward in
the second stage of the analysis.5 Thus, constraining the results
of the variant selection to the small P values for association may
exclude those SNPs that are biologically important for the
disease and that are excluded from either the replication or the
confirmation, and are also disregarded as potential predictors of
a true effect.

One attractive methodology to circumvent the puzzle of
choosing either a hypothesis-driven or an exploratory re-
search may be the strategy of gene prioritization offered by
the new bioinformatics tools based on the biological plausi-
bility of a gene-disease association and on knowledge of the
protein function.6

We propose an approach for expanding the selection of genes
or loci of interest and prioritizing associations over GWAs
related with genetic susceptibility to type 2 diabetes. The pro-
posal profits from the recent initiatives of data sharing of the
genome scan results that make the information publicly avail-
able as soon as they are generated and checked for quality. Both
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the DGI and the WTCCC are committed to embracing these
principles as they made available all the phenotype-genotype
data for type 2 diabetes.

MATERIALS AND METHODS

The proposed method combines both the use of the aforemen-
tioned open data access of the GWAs on the web sources and the
comprehensive analysis of candidate regions generated by the
freely accessible ENDEAVOUR software available at http://
homes.esat.kuleuven.be/�bioiuser/endeavor/endeavor.php.

ENDEAVOUR is a software application for the computa-
tional prioritization of candidate genes underlying biological
processes or diseases, based on their similarity to known genes
involved in a disease as previously described.7 The hypothesis
of prioritization by ENDEAVOUR is that candidate test genes
are ranked based on their similarity with a set of known training
genes. The rationale of this approach and the underlying prin-
ciple for choosing different sets of ‘training genes’ for further
gene prioritization are explained in detail in the Appendix,
Supplemental Digital Content 1, http://links.lww.com/A1049.
In addition, the complete list of the training genes, including both the
Gene HGNC symbol, and gene name are shown in the Appendix,
Supplemental Digital Content 1, http://links.lww.com/A1049.
Moreover, from the freely available site http://www.broad.mit.edu/
diabetes/, we downloaded the results of the GWA study in 3000
Scandinavian individuals about the genetic variants that influ-
ence the risk of type 2 diabetes (1464 patients with type 2
diabetes and 1467 matched controls). We also included in the
analysis the results of the GWA study of type 2 diabetes
performed by the WTCCC (2000 patients and 3000 control
samples), which were downloaded from the freely available site
http://www.wtccc.org.uk/info/summary_stats.shtml. Both consor-
tiums used the GeneChip 500K Mapping Array Set (Affymetrix
Human chip) for sample genotyping.

Type 2 diabetes cases in the DGI study were selected ac-
cording to American Diabetes Association definitions of type 2
diabetes: fasting plasma glucose �7.0 mM or 2 hour postload
glucose during an oral glucose tolerance test (OGTT �11.1
mM). To avoid confounding with type 1 diabetes, glutamate
decarboxylase antibody Ab positive patients were excluded.
Maturity-onset diabetes of the young (MODY) subjects from
families with mutations in known MODY diabetes genes and
diabetic individuals with onset age �35 years were excluded.

Type 2 diabetes cases in the WTCCC study were defined as
follows: in each case, the diagnosis of diabetes was based on
current prescribed treatment with sulfonylureas, biguanides,
other oral agents and insulin or in the case of individuals treated
with diet alone, historical or contemporary laboratory evidence
of hyperglycaemia (as defined by the World Health Organiza-
tion). Other forms of diabetes (for example, MODY, mitochon-
drial diabetes, and type 1 diabetes) were excluded by standard
clinical criteria based on personal and family history. Criteria
for excluding autoimmune diabetes included absence of first-
degree relatives with T1D, an interval of �1 year between
diagnosis and institution of regular insulin therapy and negative
testing for antiglutamate decarboxylase.8

The public dataset of both GWAs shows the following in-
formation regarding the gene variants: SNP annotation dbSNP
ID (rs) and physical mapping location, allele frequencies in
affected and unaffected individuals, test of Hardy-Weinberg
equilibrium, minor allele frequency, genotype counts in cases
and controls, and association analysis results (P values). In
addition, the DGI discloses the nearest gene name (HGNC
Symbol) as provided by the genotyping platform (the DGI

dataset has a column regarded as “GENE LIST” that belongs to
the annotation of genes within 30 kb of the SNP). To select the
SNPs in the prioritized genes, we used the information available
on the DGI dataset to couple the same list to the SNPs of
WTCCC dataset. This process guarantees that the SNPs selec-
tion in potential type 2 diabetes-candidate genes is made by the
same strategy as the nearest gene information is given as we
said before by the genotyping platform. We also double checked
the SNPs information looking at the physical mapping location
in both datasets, information also available on the NCBI SNP
Reference Assembly.

A total of 386,731 markers were analyzed from the DGI
database in both cases and controls for type 2 diabetes. Nominal
P values for each subset of data were converted to Z scores
based on the magnitude of significance and the direction of
effect (based on the odds ratio estimated for each subset of data)
as described by the authors.

In the WTCCC database, we incorporated for the analysis, a
total number of 459,653 SNPs (including those SNPs that
passed their quality control filters as did a study MAF �1%).
The authors of the WTCCC reported the P values for both the
additive and the general genetic model. The analyzed DNA
samples by the WTCCC were restricted to the white 97% of the
cohort. The samples tested are therefore estimated to be 99.8%
white.

The different number of SNPs that pass the quality criteria of
the genotyping assay in each study may explain differences on
the number of markers between the two GWAs.

After applying the ENDEAVOUR algorithm for gene priori-
tization, we performed a search in the GWAs open data for the
prioritized genes that showed, in both GWAs, a sign with a P
value for the test of association smaller than 0.05 in one data-
base and at least �0.08 in the other as a primary screening
strategy (we name this P value as screening P value). This is the
step where we joined both datasets and the screening P value
cutoff was a condition that was required to be simultaneously
present in both datasets to continue with the analysis.

To gain a better estimation of the effect, results from the
different populations were combined by Mantel-Haenszel meta-
analysis. Heterogeneity was evaluated with Q statistic and the I2

statistic, a transformation of Q that estimates the percentage of
the variation in effect sizes that is due to heterogeneity. P values
were obtained by comparing the statistic with a �2 distribution
with k � 1 degree of freedom (where k is the number of studies).9

An I2 value of 0% indicates no observed heterogeneity, and larger
values show increasing heterogeneity. For the combined analysis,
control for multiple testing was done when applicable by Bonfer-
roni correction, to obtain an empirical P value.

RESULTS

The tool ENDEAVOUR makes use of statistics to compute a
ranking of test genes according to their similarity to the training
genes. In a subsequent step, these rankings are integrated into a
single ranking by making use of order statistics. In the Appendix,
Supplemental Digital Content 2, http://links.lww.com/A1050,
we show the list of the first 20 prioritized genes of 241 from the
whole human genome (23.712 genes) with a significant association
with the training set. The whole list is presented in the Appendix,
Supplemental Digital Content 3, http://links.lww.com/A1051.

The ranking of the test genes is built by ENDEAVOUR after
integrating the data into a mathematical model based on its
similarity with the training genes. Vector-based data are scored
by the Pearson correlation between a test profile and the training
average, whereas attribute-based data are scored by Fisher’s
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omnibus analysis on statistically over represented training at-
tributes.7 Therefore, we analyzed the data regarding 1096 SNPs
in the 241 prioritized genes.

Six of 1096 SNPs located in five prioritized genes showed
the screening P value cutoff (P � 0.08) for association with
type 2 diabetes in the DGI and WTCCC datasets (Table 1 lists
the SNPs information).

The tachykinin receptor 3 of unknown function (TACR3)
showed a potential association with type 2 diabetes represented
by 1 SNP in both databases (rs1384401). In addition, FOXO1A,
a negative regulator of insulin sensitivity in liver, adipocytes, and
pancreatic beta cells that acts downstream of the insulin signaling
pathway, showed two highly correlated SNPs potentially associ-
ated with type 2 diabetes in the DGI and in the WTCCC databases
(rs10507486 and rs7323267). Calcium channel, voltage-depen-
dent, L type, alpha 1D subunit (CACNA1D), anaplastic lym-
phoma receptor tyrosine kinase (ALK), and v-akt murine thy-
moma viral oncogene homolog 3 (AKT3, protein kinase B,
gamma) showed 1 SNP, which screening P values are also
shown in Table 1. Because genotype frequencies were available
in both the WTCCC and the DGI datasets, we further investi-
gated whether the risk allele (and then the effect direction) for
each SNP potentially associated with type 2 diabetes was the
same in both datasets. To strengthen the results, we estimated
the fixed effect and P value of each SNP in the combined
dataset by Mantel-Haenszel meta-analysis. We observed signif-
icant P values for all SNPs except for rs897959 of AKT3 (Table
2), without evidence of heterogeneity in over 3300 cases and
4300 controls. It is worth noting that there was heterogeneity

between both studies for this marker but several SNPs of the
AKT3 gene were associated with HOMA index in the DGI
dataset (data not shown).

Finally, after testing different training set of genes as ex-
plained in Methods section, we observed that four of five genes
initially prioritized by the ENDEAVOUR software not only
remained in the same ranking position after applying a diverse
training set but also some of them (FOXO1A and AKT3) improved
the ranking position when using the new version of the software
that make use of a training set only for type 2 diabetes (data not
shown). We tested by both Kruskal-Wallis Test and Mann-Whit-
ney test whether the difference in the ranking position was statis-
tically significant and both tests showed that they were not statis-
tically different (P � 0.9 and P � 0.06, respectively).

DISCUSSION

Compared with traditional ways of identifying disease-asso-
ciated genes, GWAs generate an amount of data of four or five
orders of greater magnitude because they assess roughly
500,000 SNPs in a single sample. Although GWAS are not
intended to be hypothesis oriented, the data generated by them
can be used to test candidate-gene associations. However, at
that point, a comprehensive empirical analysis of candidate
gene sets is impractical and requires statistical approaches for
the analysis and interpretation of the data.

The disease-associated SNPs are often measured assuming
the stringent criteria of choosing a cutoff P value for association
as small as 10�7 by applying Bonferroni’s criteria.5,10

Table 1 Results of SNPs with P values less than 0.08 for association with type 2 diabetes either in the DGI or in the
WTCCC GWA study database for genes prioritized by the ENDEAVOUR software

NCBI SNP
referencea Type

Z P
value by
GC DGI

P value for
additive
genetic
model

WTCCC Chr.

Gene
(HGNC
symbol)

Physical
position
(NCBI

build 35)
Minor
allele

Major
allele MAF Validation statusb Gene functionc

rs1384401 Intronic 0.0107 0.0147 4 TACR3 104922682 A G 0.3395 Proven by cluster,
frequency,
submitter,
double hit

Unknown

rs4319896 Intronic 0.01487 0.0394 2 ALK 30051500 A C 0.4459 Proven by cluster,
frequency,
double hit

Orphan receptor with
a tyrosine-protein
kinase activity

rs12487452 Intronic 0.01826 0.0241 3 CACNA1D 53767451 G C 0.1939 Proven by
frequency,
double hit

Calcium voltage-gated
channel

rs10507486 Intronic 0.0676 0.00149 13 FOXO1A 40084501 A G 0.2155 Proven by cluster,
frequency

Negative regulator of
insulin sensitivity

rs7323267 Intronic 0.07172 0.0013907 13 FOXO1A 40102015 C T 0.2058 Proven by cluster,
frequency,
double hit

rs897959 Intronic 0.022 0.080 1 AKT3 240223815 C T 0.3552 Proven by cluster,
frequency

Key regulator for
cell growth, cell
survival and
metabolic insulin
action

aNCBI SNP reference.
bSNP tested and validated by a noncomputational method. Validation status according to Ensemble.
cGene function according to Gene Atlas and OMIM.
GC, P value of Test statistic after correction by Genomic Control; Gene, annotation of genes within 30kb of the SNP; MAF, minor allele frequency. Gene (HGNC symbol).
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An interesting strategy that may help to distinguish a chro-
mosomal region in which a disease causal gene is expected to
lie is the use of computational instruments that can score, based
on likelihood, candidate genes involved in a disease or biolog-
ical process by combining an optional number of heterogeneous
sources of information.7

To take advantage of the open availability of GWAs data we
investigated, whether the computational disease gene prioritization
method proposed by the bioinformatic tool ENDEAVOUR could
help differentiate, in the bulk of GWA, genes that are more or less
likely to influence genetic susceptibility to type 2 diabetes in white
subjects.

Thus, this study yielded an additional list of candidate genes
potentially associated with type 2 diabetes that were overlooked
in the original GWAs as they did not show a sufficiently small
P value for association. It is important to mention that we are
showing just five additional SNPs worthy of follow-up and
replication in other studies; thus, we are not claiming significant
association with the disease.

The rationale of the proposed approach may be extended to
populations with different genetic backgrounds. However, even
though many SNPs associated with type 2 diabetes in the three
major type 2 diabetes GWAs (DGI, FUSION, and WTCCC)

were replicated in non-white population,11 the results we are
showing regarding additional type 2 diabetes association
signals should be particularly confined to white subjects.
Differences in genetic background, linkage disequilibrium
structure, and environmental exposures may differ across
populations and may thus explain that a true susceptibility
gene for type 2 diabetes in one population might not be
readily replicated in other population.12

Although the identification and characterization of variants
associated with type 2 diabetes was thoroughly evaluated in the
previously mentioned GWAs, a potentially associated sign for
two intronic SNPs in the transcription factor FOXO1A suggests
that FOXO1A may be considered a putative candidate gene. For
instance, by combining the genotype information of both data-
bases by Mantel-Haenszel meta-analysis, we observed an effect
(cumulative odds ratio using proportional odds model 1.182,
95% confidence interval: 1.07–1.29, P � 0.001, without heter-
ogeneity) similar to the one observed for those genes that were
reported as significantly associated with type 2 diabetes in both
studies.1,8 Supporting this observation, it was reported in animal
models that the haploinsufficiency of the FOXO1A restores
insulin sensitivity and rescues the diabetic phenotype in insulin-
resistant mice and that, conversely, a gain-of-function FOXO1A

Table 2 Estimation of the effect of each SNP associated with type 2 diabetes in the combined dataset (DGI and
WTCCC GWA study)

NCBI SNP
reference

Gene
(HGNC
symbol) Genotype

Risk
allelea

No. cases/
controls OR (95% CI)

Cumulative OR
(95% CI)

Nominal
P value

Empirical
P value

Test for
heterogeneityb

rs1384401 TACR3 AA* G 3374/4394 3.9 � 10�4 0.0023 0.57

AG 1.24 (1.07–1.46)

GG 1.34 (1.15–1.58) 1.17 (1.07–1.27)

rs4319896 ALK CC* A 3379/4387 3.1 � 10�3 0.018 0.64

AC 1.15 (1.02–1.28)

AA 1.23 (1.08–1.39) 1.15 (1.05–1.25)

rs12487452 CACNA1D GG* C 3339/4368 1.2 � 10�3 0.007 0.76

GC 1.16 (0.87–1.56)

CC 1.34 (1.01–1.78) 1.18 (1.06–1.30)

rs10507486 FOXO1A AA* G 3382/4399 5.1 � 10�4 0.003 0.45

AG 1.09 (0.87–1.37)

GG 1.27 (1.02–1.59) 1.18 (1.07–1.29)

rs7323267 FOXO1A CC* T 3382/4397 2.8 � 10�4 0.001 0.56

CT 1.07 (0.85–1.36)

TT 1.27 (1.01–1.60) 1.19 (1.08–1.31)

rs897959 AKT3 CC* T/C 3382/4396 0.91 5.46 8.4 � 10�3

CT 1.03 (0.89–1.20)

TT 1.02 (0.88–1.19) 0.99 (0.91–1.08)
aRisk allele in both datasets.
bP value for heterogeneity. Odds ratios (OR) and 95% confidence intervals (95% CI) toward the first genotype (the reference genotype as indicated by an asterisk) for
the other two genotypes is indicated. P value stands for one-sided alternative (cases � controls) significance from the extended Mantel-Haenszel (MH) test for trend for
the combined studies. MH cumulative OR (95% CI) for the combined studies is also shown. Cumulative OR using proportional odds model 22 stands for the cumulative
effect of the two genotypes (heterozygous and homozygous for the risk allele (and then risk allele copy) in comparison with homozygous for the nonrisk allele. Control
for multiple testing was done by Bonferroni correction to obtain an empirical P value. Risk allele for rs897959 is not the same in both datasets (T is the risk allele in the
DGI dataset and C is the risk allele in the WTCCC dataset).

Genetics IN Medicine • Volume 11, Number 5, May 2009 GWAS and gene prioritization

Genetics IN Medicine • Volume 11, Number 5, May 2009 341



mutation results in diabetes.13 This may be the reason that
explains FOXO1A is regarded as a potential therapeutic target
for improving insulin resistance14 and also may be a contributor
to type 2 diabetes.

Similarly, other genes were prioritized: ALK, CACNA1D, and
TACR3. ALK was originally identified as a member of the
insulin receptor subfamily of receptor tyrosine kinases, an or-
phan receptor in vertebrates, and seems to be particularly ex-
pressed in hypothalamic and sympathetic chain neurons and the
ganglion cells of the gut indicating its possible role in regulating
energy balance.15

The CACNA1D gene encoding calcium channel, voltage-
dependent, L type, alpha 1D subunit may participate in the
regulation of insulin secretion.16

The TACR3 gene encodes the tachykinin NK (3) receptor of
still unknown function. But the presence of tachykinin3 and its
receptor (TACR3) in a wide variety of peripheral tissues argue
for a still unexplored role of this system in mediating visceral
effects of tachykinins.17

Although the AKT3 variant was not significantly associated
with type 2 diabetes in the pooled dataset, more studies may be
necessary to determine its role in the disease, because the
protein encoded by the AKT3 gene is a member of the AKT,
also called PKB, serine/threonine protein kinase family. AKT
kinases are known to be regulators of cell signaling in response
to insulin and growth factors. They are involved in a wide
variety of biological processes, including cell proliferation, dif-
ferentiation, apoptosis, tumorigenesis, and glycogen synthesis
and glucose uptake.18

A criticism of our approach might be that we searched by
“gene name” for the prioritized genes in the databases (DGI) to
perform thereafter a joined analysis in both GWAs coupling the
same list of SNPs in the prioritized genes. This list is based on
genes nearby the SNPs based on certain criteria. However, this
is not always correct. Often it is not clear to what gene a SNP
belongs, and it is not necessarily the closest one. Because of
linkage desequilibrium (LD) structures in the genome, SNPs are
sometimes linked to multiple genes, and it is not clear which
gene is functionally causal. Nevertheless, as the raw datasets
are not available to the public, we could not calculate hap-
loblocks and map SNPs back to genes, based on LD. Nev-
ertheless, an important point is that in the Mapping 500K
Array Set, SNP annotation includes dbSNP ID, nearest gene,
physical map location, cytoband, and allele frequencies in
multiple populations, a reasonable strategy to offer accuracy
in the SNP localization.

The advantage of our approach is that the predisposing
SNP selection does not only rely on the most extreme P
values but also reinforces the plausible biological relevance
of the association. In searching for 240 genes (roughly 1000
SNPs), some associations with P � 0.05 may emerge by
chance, because 1% of the SNPs meet this condition in both
databases. However, we believe that the concurrent biologi-
cal plausibility is extremely improbable. Furthermore, the
correlation between P values of both databases is extremely
low (for instance, for type 2 diabetes it is NS, Spearman R:
�0.0028, P � 0.2496). Hence, we propose to give special
treatment to the analysis of the markers at the prioritized
genes across the genome to assist in further selection of SNPs
that will be considered for replication.

A note of caution should be added. In the analysis of the
GWAs datasets, we only included the prioritized gene list built
by ENDEAVOUR, and the list of genes included in the training
set was not initially evaluated. However, we performed an
additional evaluation of the association analyses based on the

reported P values in the GWAs on the training gene list.
Remarkably, the TCF7L2 gene (represented by five SNPs sig-
nificantly associated with type 2 diabetes in DGI, WTCCC, and
also the FUSION study)2 was part of the training set; however,
it is most likely because TCF7L2 was originally identified as a
gene with strong T2D association.

We emphasize that our proposal complements the current
statistical methods used to test true associations. Markers yield-
ing modest P values may be considered alongside the other
markers that show P values in the order of 10�7. Of course, our
procedure does not contemplate the unexpected markers with
unknown functions, new mechanistic connections, or unsus-
pected contributions to the disease, as the nature of the afore-
mentioned procedure is just oriented to those genes of some
biological importance as candidate genes.

It is worth mentioning that other reports shared the concern
about deciding the SNPs in GWAs that merit follow-up and
further replication analysis. Chen et al.19 recently proposed an
approach for selecting SNPs based on a hierarchical model.
This approach, which is not strictly based on biological
plausibility of candidate’s genes, allows the users to incor-
porate existing information about the SNPs into the analysis.
For instance, the algorithm ranks P values assuming a
weighting function that incorporates prior information about
linkage or association evidence.

Almost simultaneously, Lewinger et al.20 proposed a similar
approach based on hierarchical regression modeling to select a
subset of markers from the first stage of a GWAs. The model,
rather than selecting the most significant marker-disease asso-
ciations at some cutoff, is based on a prior model for the true
noncentrality parameters of these associations composed of a
large mass at zero and a continuous distribution of nonzero
values. Resembling the previously mentioned study, the pro-
posal of Lewinger et al. also allows the consideration of various
covariates that characterize each marker, such as their location
relative to genes or evolutionary conserved regions, or prior
linkage or association data. But, none of these studies include in
the analysis existing data from GWAs.

Finally, a recent study identified additional susceptibility loci
for type 2 diabetes by performing a meta-analysis of three
published GWAs.21 As acknowledged by the authors, GWAs
are limited by the modest effect sizes of individual common
variants and the need for stringent statistical thresholds. Thus,
by combining data involving 10,128 samples, the authors found
in the initial stages of the analysis highly associated variants
(they followed only 69 signals out of over 2 million meta-
analyzed SNPs) with P values �10�4 in unknown loci, and 11
of these type 2 diabetes’ associated SNPs were taken forward to
further stages of analysis. Large stage replication testing al-
lowed the detection of at least six previously unknown loci with
robust evidence for association with type 2 diabetes.

As a final approach to support the potential usefulness of our
proposal, we performed an additional test. We chose the first 20
genes prioritized by ENDEAVOUR, and related to these genes
there were 1729 SNPs. We simultaneously chose 20 genes in
position 20,000 (the whole genome captured by ENDEAVOUR
has 23,712 genes). In relation to these genes, there were 534
SNPs. We further explored in the Diabetes Genetics Replication
And Meta-analysis Consortium data available at http://www.
well.ox.ac.uk/DIAGRAM/ how many SNPs were found among
the above mentioned 1729 SNPs and how many SNPs were
found among the 534 SNPs. Interestingly, among the first 20
prioritized genes there were 88 SNPs with a P value �0.05
in the Diabetes Genetics Replication And Meta-analysis
Consortium dataset. However, among the last prioritized
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genes, only 10 SNPs showed a P value �0.05. This differ-
ence was statistically significant (P � 0.003, �2). Hence, we
can assume that our proposal has a potential strength to
prioritize SNPs for further follow-up in GWAs.

In conclusion, the proposed strategy may be used as an
alternative tool for optimizing the information of the nearly
500,000 gene variants in those markers with modest signif-
icant P values for disease association (close to 10�3–10�4),
which are ignored as they are not satisfactorily small and are
dumped into a sea of false positives results.10 Additionally,
the said SNPs may be incorporated in the replication of the
multistage design involved in the GWA studies.

We wish to point out that data sharing of GWA studies offers
an unprecedented opportunity to generate new hypotheses and
explore the association between specific genes and disease. The
strategy devised in this report is exemplified for type 2 diabetes
but would be applicable to the metabolic syndrome and related
traits as well.

We propose that a further gain can be achieved by data
sharing with a consensus format among databases (for example
by providing raw allele or genotype frequencies with clear
indication of strand location as in the WTCCC dataset).
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