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Purpose: Genetic polymorphisms in the N-acetyltransferase 2 gene determine the individual acetylator status,

which influences both the toxicity and efficacy profile of acetylated drugs. Determination of an individual’s

acetylation phenotype prior to initiation of therapy, through DNA-based tests, should permit to improve therapy

response and reduce adverse events. However, due to extensive linkage disequilibrium between markers within

NAT2, the genotyping of closely spaced markers yields highly redundant data: testing them all is expensive and

often unnecessary. The objective of this study is to establish the optimal strategy to define, in the genetic context

of a given ethnic group, the most informative set of single-nucleotide polymorphisms that best enables accurate

prediction of acetylation phenotype. Methods: Three classification methods have been investigated (classification

trees, artificial neural networks and multifactor dimensionality reduction method) in order to find the optimal set

of single-nucleotide polymorphisms enabling the most efficient classification of individuals in rapid and slow

acetylators. Results: Our results show that, in almost all population samples, only one or two single-nucleotide

polymorphisms would be enough to obtain a good predictive capacity with no or only a modest reduction in power

relative to direct assays of all common markers. In contrast, in Black African populations, where lower levels of

linkage disequilibrium are observed at NAT2, a larger number of single-nucleotide polymorphisms are required to

predict acetylation phenotype. Conclusion: The results of this study will be helpful for the design of time- and

cost-effective pharmacogenetic tests (adapted to specific populations) that could be used as routine tools in

clinical practice. Genet Med 2006:8(2):76–85.
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The human acetylation polymorphism is one of the first
human hereditary traits affecting drug response to be discov-
ered. It occupies a position of singular importance in the his-
tory of pharmacogenetics and in the future impact of the field
on the practice of medicine.1 It refers to inter-individual dif-
ferences in the acetylation capacity of many clinically impor-
tant drugs, as well as of known carcinogens present in the diet,
cigarette smoke and the environment. Two main metabolic
phenotypes have been described in human populations: the
fast acetylator phenotype, associated with a normal acetylation
capacity, and the slow acetylator phenotype characterized by a
decreased enzyme activity. The proportions of rapid and slow
acetylators vary remarkably in populations of different ethnic
or geographic origin. The gene coding for the arylamine N-
acetyltransferase 2 (NAT2) enzyme has been established as the
site of the classic human acetylation polymorphism2–4 and the
molecular basis of individual and interethnic variation in acet-
ylation capacity is now well documented.5,6

Individual differences in NAT2 activity have been proved to
be important determinants of both the effectiveness of thera-
peutic response and the development of adverse drug reactions
and toxicity during drug treatment.7,8 Slow acetylators are gen-
erallymore prone to side effects from drugs that are acetylated,
due to the build-up of non-metabolized drugs.9,10 On the con-
trary, fast acetylatorsmay exhibit therapeutic failure after stan-
dard doses. Therefore, routine screening of individuals for
their acetylator status prior to initiation of therapy should per-
mit to improve drug efficacy and reduce adverse events, espe-
cially during chronic treatment with drugs known to undergo
acetylation as a major metabolic pathway. For instance, the
classification of patients as fast or slow acetylators facilitates
the establishment of the appropriate dosage regimen of isoni-
azid used for the rational treatment of tuberculosis.11 Kinzig-
Schippers et al.12 recently showed that, to achieve similar iso-
niazid exposure, current standard doses should be decreased or
increased by approximately 50% for slow acetylator and fast
acetylator patients, respectively.
The caffeine metabolite assay is currently the gold standard

for assigning acetylator status through the measure of NAT2
activity in vivo.13,14 However, the several potential limitations
of phenotyping assays have led to the development of genotyp-
ing methodologies for the direct typing of the most common
genetic polymorphisms in NAT2. Genotyping is generally ac-
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cepted as an accurate and efficient means to determine acety-
lator status since a high correlation between phenotype and
genotype has been demonstrated in several studies. In partic-
ular, the analysis of the sevenmost common SNPs (Single Nu-
cleotide Polymorphism) inNAT2 has been shown to be highly
predictive of the acetylator phenotype with a prediction rate
close to 100%.11,15–19 The small discrepancies between geno-
typing and phenotyping studies may result from failures of the
phenotyping test (sample handling, data reporting errors, as-
say failure), from confounding factors influencing phenotyp-
ing results (age, disease status, diet, compliance of drug intake,
drug interaction, etc.), or may be due to the presence of addi-
tional undetected disabling mutations. But the relative agree-
ment between phenotyping and genotyping studies indicate
that unknown NAT2 mutant alleles should be present at low
frequencies and therefore may not substantially influence the
phenotype prediction in population studies.
However, the complete typing of a subject can only be

achieved at a high cost, and several days are necessary to com-
plete the analyses. For instance, the analysis of the seven major
SNPs at the NAT2 gene locus in one single subject requires
several PCR reactions and sevenRFLP assays, and further anal-
yses are required to resolve the gametic phase ofmutations and
reconstruct haplotypes.20 This would not be feasible in clinical
practice. To become routine clinical tools, genotyping tests
have to be cost- and time-effective; this implies a reduction in
the number of SNPs to be typed. The issue of selecting themost
informative markers for the prediction of acetylation pheno-
type is therefore of high clinical relevance.
The NAT2 gene displays a strong haplotype structure with

extensive linkage disequilibrium (LD) between markers and a
limited haplotype diversity.21,22 This feature makes unneces-
sary the genotyping of closely spaced SNP markers which
would result in a large amount of redundant information. In-
deed, in such a case, only a small fraction of SNPs can be used
to distinguish a large fraction of the haplotypes.23 This offers
the possibility to dramatically reduce the number of SNPs re-
quired to completely genotype a sample without losing much
haplotype information.
The objective of the present study is to identify the most

independent and informative SNPs withinNAT2 that could be
efficiently genotyped on large samples. And specifically, we
aim to determine whether there exists a smaller combination
of SNPs that permits to assess acetylator phenotype with a pre-
dictive power as high as that reached when all common SNPs
are typed. Furthermore, because of large interethnic differ-
ences inNAT2 allele frequencies and of variable pattern of LD
across populations, the SNPs to be typed in a genotyping test
are likely to be different for every ethnic group.We thus exam-
ined towhat extent the optimal subset of SNPs differs fromone
population to another.
We handled these issues by using some recently developed

classification methods. Three approaches have been explored:
the first one implements a tree-based analysis andmakes use of
decision trees,24 the second one is based on artificial neural
networks,25 and the last one is the multifactor dimensionality

reduction method.26 By using these classification methods,
we aimed to find the smallest set of SNPs within NAT2 that
enables the most efficient classification of individuals into
rapid and slow acetylators. Compared to traditional tech-
niques of analysis such as logistic regression, these nonpara-
metric statistical methods offer the possibility to model com-
plex nonlinear relationship between phenotype and genotype,
without the explicit construction of a complicated statistical
model. Another practical advantage of these methods is their
use of unphased multi-locus genotypes as input data, which
alleviates the need of reconstructing haplotypes from genotype
data. While the primary goal of these approaches was to high-
light an association between candidate gene polymorphisms
and a disease phenotype, we show in this study that they can
also be useful tools for selecting highly informative markers to
predict individual metabolizer status using pharmacogenetic
data.

MATERIALS AND METHODS
NAT2 molecular data sets

We analyzed NAT2 molecular data from eight previously
published data sets. They concerned 258 Spanish fromCentral
Spain,27 137 Nicaraguans with a Central American Indian-
European mixed origin,28 1,000 Koreans,19 101 Black South
Africans (Tswana-speaking people),29 564Germans,30 248Pol-
ish from theWielkopolska region,15 303 Turks from south-east
Anatolia,31 and 50 non-caste Dogons fromMali, collected in 6
villages in the district of Sangha.32 A summary description of
the study samples is provided in Table 1.
In each population sample, all individuals were genotyped

for the same seven nucleotide changes that are commonly found
in human populations at NAT2 (except in Koreans where the
C190T mutation was investigated instead of G191A). Four re-
sult in an amino acid substitution that leads to a significant
decrease in acetylation capacity (G191A, T341C, G590A,
G857A). The other three are either silent mutations (C282T,
C481T) or a non-synonymous substitution that does not alter
phenotype (A803G).
The individual acetylation phenotypes were predicted from

the diplotype configuration at NAT2. In the first four samples
listed above, the mutation linkage phase was resolved directly
throughmolecular haplotyping (combination of allele-specific
PCR and restriction mapping) and this procedure was applied
to all multiply heterozygous subjects. In the four others, link-
age phase patterns were only partially resolved by molecular
haplotyping, making haplotype phase information available
for 41%–74% individuals. To infer haplotypes from the unre-
solved multi-locus genotypes, we employed the PHASE pro-
gram (PHASE v 2.1),33 using the default parameter values in
the Markov chain Monte Carlo simulations. In this way, indi-
vidualmulti-siteNAT2 genotypes were assigned to a particular
combination of two multi-locus haplotypes, each being con-
sidered as an allele of the NAT2 gene.34

TheNAT2* alleles were classified on grounds of the current
knowledge of the functional impact of the variant alleles. Con-
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sequently, the NAT2*4, NAT2*12 and NAT2*13 alleles were
considered as functional alleles, and the NAT2*5, NAT2*6,
NAT2*7, NAT2*14 and NAT2*19 alleles as slow alleles. Indi-
viduals with two low activity alleles were classified as slow
acetylators, while those with one or two functional alleles were
considered rapid acetylators.
The objective of our study was to determine whether a small

subset of SNPs among the seven considered is able to recover
the same classification of individuals into rapid and slow acety-
lators as that reached when all common SNPs are taken into
account.

Classification trees

Zhang and Bonney24 described an innovative use of classifi-
cation trees for identifying disease genes and susceptibility al-
leles in association studies. We followed the same approach
with the purpose of pointing up the SNPmarkers withinNAT2
that enable the best discrimination between slow and rapid
acetylators.
To perform such a tree-based analysis, we first prepared data

in a logistic regression format. In the present application, the
response variable is the individual acetylator status, and seven
covariates were created which record the number of copies (0,
1, or 2) of theminor allele for each SNPmarker atNAT2. Then,
we used the RTREE program (http://peace.med.yale.edu) for
tree construction.
A detailed technical description for constructing classifica-

tion trees is given elsewhere.24,35 Briefly, the first step of tree
construction is to build an initially large tree using recursive
partitioning. During this step, the partition of an internal node
into two offspring nodes is carried out by the values of one of
the covariates, and it is aimed at improving the distribution

homogeneity of the outcome, i.e., the acetylator status. Then, a
second step called pruning is applied: it removes from bottom
up those splits that may be “superficial” or based on an unre-
liably small samples. A split is regarded as unnecessary if the
chi-square tests from this split aswell as its further splits are not
significant at a prespecified level. The pruning procedure was
applied at various significance levels, from 0.01 to 10�6.
Cross-validation methods were used to estimate the predic-

tion error of the constructed decision tree by leaving out a
portion of the data as an evaluation data. With five-fold cross-
validation, each data set was divided into five groups with
randomizing and alternating the data. Four groups were
used to construct the classification tree, and one group was
used as evaluation data; this construction and evaluation pro-
cess was repeated five times, so that each group was assessed
once as evaluation data. Then, the prediction accuracy of eval-
uation data across all five trials was calculated and averaged for
the overall prediction accuracy of the decision tree. To ensure
that the analysis was not influenced by a chance division of the
data (i.e., an order effect), the analysis was repeated 10 times
with randomizing the data.

Artificial neural networks

An artificial neural network (ANN) is a powerful data mod-
eling tool that is able to capture and represent complex input/
output relationships without having to code an explicit algo-
rithm for deciding on the appropriate output. It is configured
for a specific application, such as pattern recognition or data
classification, through a learning process. The pattern-recog-
nition properties of neural networks have been shown to be
efficient tools to investigate association between a disease
phenotype and a multi-locus genotype.25,36–38

Table 1
Study samples

Sample Description and selection criteria

258 Spanish27 Healthy, unrelated white Spanish volunteers. All subjects were in good health and with no antecedent of disease. Most subjects
were medical students from Extremadura (Badajoz, Spain) and the surrounding area.

137 Nicaraguans28 Healthy, unrelated subjects from a mixed Nicaraguan population. Most of them were students and staff of the Universidad
Nacional Autónoma de Nicaragua (León, Nicaragua). Only subjects with Central American Indian–white mixed origin were
included. All were in good health and had no history of serious disease.

1,000 Koreans19 Korean individuals who visited the health promotion center at Samsung Medical Center.

101 Black South Africans29 Tswana-speaking people from the North-West Province. They were all healthy volunteers and were part of Transition and Health
during Urbanization of South Africans (THUSA) study.

564 Germans30 Unrelated subjects of German origin comprising healthy volunteers and hospitalized individuals with various diseases but
without known malignancy from the departments of Internal Medicine, Pulmonology, and Urology in Berlin, Germany.

248 Polish15 Unrelated children and adolescents of Polish origin. They were randomly selected from patients from the Wielkopolska region
who had come to the Third Clinic of Children’s Diseases of the University School of Medicine in Poznan because of ordinary
respiratory or urinary tract infections or during a routine control visit to the outpatient clinic. Patients with autoimmune
disease or malignancy were excluded.

303 Turks31 Unrelated Turkish individuals from south-east Anatolia (born and living in Gaziantep and surrounding). Except for 18 healthy
volunteers, all were outpatients of the Gaziantep University, Faculty of Medicine, with a broad range of non-malignant
diseases.

50 Dogons from Mali32 Healthy, unrelated black Africans, namely non-caste Dogons from Mali. They were collected in 6 villages in the district of Sangha,
Republic of Mali.
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We performed neural network analysis with the NNPERM
package as described inNorth et al.25 In the current application
the initial inputs to the first layer of the network consist of
NAT2multi-locus genotypes while the output consists of indi-
vidual acetylator status. The following procedure was applied.
For each subject we presented the SNP genotypes as input with
that subject’s acetylator status as the target output. This was
repeated for each subject in order to train the network to pre-
dict acetylator status from SNP genotypes, and this training
can only be successful if a significant association exists between
the markers and the acetylation phenotype. This training pro-
cess was repeated for all subjects over a number of training
epochs. Once training was completed, a T statistic was com-
puted to compare the outputs for slow and rapid acetylators in
the same way as an unpaired t statistic, and the statistical sig-
nificance of any observed association between genotype and
acetylator status was estimated using a permutation test, as
described in North et al.25

Since the goal of the present study is to select the most in-
formative set of SNPs for the prediction of acetylation pheno-
type, we constructed an ANN model for each combination of
N SNPs where N varies from one to seven. We compared the
performance of each constructedANNmodel (i.e., its ability to
correctly classify subjects into slow and rapid acetylators from
themulti-locus genotypes) through the computation of a clas-
sification error rate with the NeuroSolutions v4.0 software
(NeuroDimension, Inc., Gainesville, FL).
To ensure that the network performs well on data that it has

not been trained on, we estimated the prediction accuracy of
the trained network using five-fold cross-validation: four-
fifths of the data were assigned as learning data and were used
to train the network (providing a classification error rate) and
the one-fifth piece of the data left out as an independent test
piece was assigned as evaluation data and was used to test the
model’s ability to generalize to independent data (providing a
prediction error rate). The procedure was repeated for each of
the five pieces of the data and the classification and prediction
errorswere averaged across all five trials.We ran the analysis 10
times, randomizing the order of data before presenting it to the
network.
All data sets were analyzed using a neural network with two

hidden layers of three nodes each. We showed indeed that a
more complex architecture did not improve the neural net-
work performance for the studied samples, and obtaining a
permutation test P-value from 1,000 permutations each train-
ing over 200 training cycles.

Multi-factor dimensionality reduction

Ritchie et al.26 developed a nonparametric and geneticmod-
el-free approach called multifactor dimensionality reduction
(MDR) that reduces the dimensionality of multi-locus infor-
mation to improve identification of polymorphism combina-
tions associated with the risk for common complex multi-fac-
torial diseases. A theoretical study has proved that MDR is
ideally suited for discriminating between binary clinical end-
points using multi-locus genotypes.39 The kernel of the MDR

algorithm is comprised of three general steps: attribute selec-
tion, attribute construction, and classification.Model selection
and evaluation is carried out using cross-validation and per-
mutation testing. See Ritchie et al.26,40 for the original descrip-
tions of the MDR method.
We performed MDR analyses on the NAT2 data sets using

the MDR software package (http://www.epistasis.org/mdr.
html).41We considered a number of N-factor models where N
varies from one to seven. All possible combinations of N fac-
tors were evaluated sequentially for their ability to classify
rapid and slow acetylators and the best N-factor model was
selected. An MDR model is developed using 4/5th of the data
and a classification error is estimated from this training set.
Then, cross-validation methods are used to estimate the pre-
diction error of the selectedMDRmodel using 1/5th of the data
as evaluation data. This procedure was repeated for each of the
five pieces of the data and the classification and prediction
errors were averaged across all five runs.
Single best models were selected from among each of the

one-factor, two-factor, three-factor, up to seven-factor combi-
nations. Among this set of best multifactor models, the com-
bination of SNPs thatminimizes the prediction error andmax-
imizes the cross-validation consistency was selected. When
two or more models had the same prediction error and cross-
validation consistency, statistical parsimony was used to select
the smaller model as the more likely candidate. An empirical
P-value for the result was determinedusing a permutation test-
ing strategy by randomizing the rapid and slow acetylator sta-
tus in the original data set.41

We analyzed the data using five-fold cross-validation and
1,000-fold permutation testing. To ensure that the analysis was
not influenced by a chance division of the data or by initial
conditions, the analysis was repeated 10 times using 10 differ-
ent random number seeds.

RESULTS

We will first detail results regarding the German sample.
Figure 1 depicts the classification tree provided by the tree-
based analysis when applied to the German sample. Only one
tree was found after pruning whatever the significance level
used, and all �2 tests performed at each internal node were
highly significant (P-value� 10�6). Only two SNPs are used in
this tree (T341C and C282T) and they are both employed
twice. For instance, in the case of T341C, a first split categorizes
individuals with two 341C alleles on one side, and a further
split in the tree distinguishes individuals with zero or one 341C
allele. This suggests an additive effect of these alleles since in-
dividuals with one or two alleles are not in the same terminal
nodes: an extra 341C or 282T allele increases the probability of
being classified as a slow acetylator.
In this decision tree, each subject is classified either as a rapid

or a slow acetylator according to hisNAT2 two-locus genotype
with a 100% probability; there are indeed no misclassified in-
dividuals in any of the terminal nodes. An identical tree topol-
ogy was obtained when four-fifths of the data were used to
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construct the tree, in all five cross-validation trials and across
all ten runs. The overall prediction accuracy of this classifica-
tion treewas 100%. Therefore, in this German sample only two
SNPs are needed to predict the individual acetylator statuswith
a prediction power as high as that reached when all the seven
SNPs are considered. One of these SNPs (T341C) is, in fact, a
functional polymorphism which entails a decreased acetyla-
tion capacity but the other one (C282T) is a silent polymor-
phism with no impact on phenotype. It is nonetheless infor-
mative for the prediction of acetylation phenotype since the
282T allele is almost always associated with two functional
polymorphisms in the NAT2 gene (590A, 857A) in this popu-
lation sample. This allele can be therefore considered as a
predictive marker for the presence of these two inactivating
mutations.
The German sample was also analyzed using an artificial

neural network. Highly significant P-values (P � 0.000999)
were obtained for all the combinations of SNPs tested, except

whenG191A andG857Awere considered either in isolation or
in combination (non-significant P-values). Figure 2 displays
the different classification rates achieved by the network when
analyses were performed with all subsets of N SNPs among the
seven investigated where N varies from one to seven. Obvi-
ously, the best performance of the neural network is observed
when all the seven SNPs are considered: the prediction accu-
racy of the network achieves themaximal value of 100%.How-
ever we can note that the same performance is achieved when
smaller sets ofmarkers are used as input data in the network. In
particular, a combination of two SNPs, C282T and T341C, can
predict acetylator statuswith the same ability as the entire set of
SNPs. They are the same as those pointed out by the tree-based
method.
The results of the MDR analysis of the German data set for

each number of factors considered are presented in Table 2.
The model with the lowest prediction error and highest cross-
validation consistency was selected for each SNP combination
level performed. The reported cross-validation consistency is
the number of cross-validation intervals (maximum of 5) that
a particular combination of SNPs was selected as the best
model by MDR averaged across the 10 runs. The average clas-
sification and prediction errors of each selected model are the
averages across all cross-validation intervals and all runs. The
most parsimonious model that minimized prediction error
and maximized the cross-validation consistency was the two-
factor model that included again the SNPs C282T and T341C.
The permutation testing indicated the cross-validation consis-
tency and the prediction error are statistically significant at the
0.001 level. The prediction rate provided by this two-SNP
model is as high as that displayed by the seven-factor model.
There is a sharp contrast with the results provided by the

MDR analysis of the African samples. For instance, in the case
of the Malian sample (Table 3), the maximal values of the
prediction rate and cross-validation consistency are only
reached when the seven SNPs are considered. The most parsi-
monious model consists of the three-factor model composed
of G191A, T341C, and G590A; it can predict acetylator status
with a prediction rate of only 98% compared with the 100%
rate achieved with the seven-factor model.
The results of all analyses performed on the eight studied

samples with the three methods investigated are presented in
Table 4. In all samples except the African ones, the tree-based
analysis provided only one tree topology whatever the signifi-
cance level used for pruning: a single combination of SNPs was
thus found in these samples. In the African samples, we chose
to select the subset of SNPs involved in the tree enabling the
best discrimination between slow and rapid acetylators. In the
MDR analysis, the algorithm selects only one combination of
SNPs for each number of factors considered, whereas in the
neural network analysis, more than one combination of mark-
ers can be selected for each SNP combination level since all
combinations of SNPs are evaluated by the user. For instance,
in the Spanish sample, the SNP C481T can be used instead of
T341C without changing the network’s prediction accuracy.
All approaches provided concordant results for all studied

Fig. 1. The pruned tree at significance level 10�6 derived from the tree-based analysis of
the German sample, when using the whole data set for tree construction.30 Internal and
terminal nodes are respectively represented by circles and boxes. The top node contains
the entire study sample, and all other nodes are subsets of the study sample, which are
some of the 564 German subjects investigated. Inside each node are the numbers of rapid
(R) and slow (S) acetylators. Under each internal node is the split based on the genotype
at one SNP marker (in italics). For example, the first internal node is split based on the
number (2 vs. 0 or 1) of the minor allele 341C at position 341 of the NAT2 coding
sequence. Among all the single binary splits allowed by the alleles on the seven markers
considered, this partition offers the “best possible” performance by attempting to send
more slow acetylators in one offspring node and more rapid acetylators in the other one.
Individuals with two 341C alleles are classified as slow acetylators.
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samples: the same subsets of SNPs were selected whatever the
method used.
As shown above, only 2 SNPs (C282T and T341C) in the

German sample can predict acetylator status with the same
ability than the seven common SNPs. The same finding was
also observed in all other European samples investigated
(Polish, Turks and Spanish). In Nicaraguans, another combi-

nation of two SNPs was selected (T341C and G590A), but
again, it was sufficient to reach a prediction rate of 100%. In
Koreans, the best model is composed of the two same SNPs as
those found in Europeans; however, it is interesting to note
that only one of them, C282T, can predict acetylator status
with a very high probability (99%). In contrast, in the two
Black African populations, three SNPs (G191A, T341C, and

Fig. 2. Results of the neural network analysis of the German sample.30 The graph shows the different values of the network’s prediction accuracy when all possible combinations of SNPs,
from one to six SNPs, are considered as input data. They are compared to the value obtained when all the seven SNPs are considered (last bar right in the chart). The best neural network
performance (accuracy of 100%) is achieved with several subsets of SNPs, among which a two-SNPs model involving C282T and T341C (pointed by the black arrow).

Table 2
Results of the MDR analysis of the German sample30

No. of factors
considered Best candidate model

Average cross-validation
consistency

Average classification
error (%)

Average prediction
error (%)

1 A803G 4.4 33.65 35.67

2 C282T, T341C 5.0a 0.00a 0.00a

3 G191A, C282T, T341C 5.0 0.00 0.00

4 G191A, C282T, T341C, C481T 5.0 0.00 0.00

5 G191A, C282T, T341C, C481T, G590A 5.0 0.00 0.00

6 G191A, C282T, T341C, C481T, G590A, A803G 5.0 0.00 0.00

7 G191A, C282T, T341C, C481T, G590A, A803G, G857A 5.0 0.00 0.00

aP � 0.001.
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G590A) are required to assess acetylation phenotype and the
corresponding prediction rate is lower than that observed in
the other populations.

DISCUSSION

Knowledge of the genetic basis of acetylation polymorphism
should led to the development of genotyping tests of high effi-
ciency and accuracy that will become routine tools with which
clinicians will select medications and drug doses for individual
patients. The procedure requires genotype information about
a small number of individuals for an initial set of SNPs and
selection of an optimum subset of SNPs that could be effi-

ciently genotyped on larger numbers of samples while retain-
ing most of the genetic variation in samples.
A practical and ethical concern is the transferability of diag-

nostic tests across ethnic groups. Our results show that the
most informative subset of SNPs for the prediction of acetyla-
tion phenotype in one populationmay not necessarily perform
well in another if the populations are sufficiently differenti-
ated. Two distinct reasons may explain why the selected SNPs
differ across ethnic groups. First, the underlying genetic causes
of acetylation phenotype show significant differences in allele
frequency across populations. The second reason is the vari-
able pattern of LD across populations with different demo-
graphic histories. This is of particular relevance whenmarkers,

Table 3
Results of the MDR analysis of the Malian sample32

No. of factors
considered Best candidate model

Average cross-validation
consistency

Average classification
error (%)

Average prediction
error (%)

1 C282T 3.7 29.31 36.80

2 T341C, G590A 4.6 12.00 15.20

3 G191A, T341C, G590A 5.0a 2.00a 2.04a

4 G191A, C282T, T341C, G590A, G857A 4.5 0.00 2.05

5 G191A, C282T, T341C, G590A, G857A 4.5 0.00 2.25

6 G191A, C282T, T341C, C481T, G590A, G857A 4.5 0.00 2.77

7 G191A, C282T, T341C, C481T, G590A, A803G, G857A 5.0 0.00 0.00

aP � 0.001.

Table 4
Best combinations of SNPs selected in each studied sample with the three classification methods

Sample Tree-based analysisa Neural network analysisb
Multifactor Dimensionality

Reduction analysisb

564 Germans30 C282T, T341C (100%) C282T, T341C (100%) C282T, T341C (100%)

248 Polish15 C282T, T341C (100%) C282T, T341C (100%) C282T, T341C (100%)

303 Turks31 C282T, T341C (100%) C282T, T341C (100%) C282T, T341C (100%)

258 Spanish27 C282T, T341C (99.6%) C282T, T341C (99.61%) C282T, T341C (99.61%)

C282T, C481T (99.61%) G191A, C282T, T341C (100%)

G191A, C282T, T341C (100%)

G191A, C282T, C481T (100%)

137 Nicaraguans28 T341C, G590A (100%) T341C, G590A (100%) T341C, G590A (100%)

1000 Koreans19 C282T, T341C (99.0%) C282T (99.00%) C282T (99.00%)

C282T, T341C (99.70%) C282T, T341C (99.70%)

T341C, G590A, G857A (100%) T341C, G590A, G857A (100%)

101 Black South Africans29 G191A, T341C, G590A (95.0%) G191A, T341C, G590A (100%) G191A, T341C, G590A (100%)

50 Dogons from Mali32 G191A, T341C, G590A (98.0%) G191A, T341C, G590A (98.00%) G191A, T341C, G590A (98.00%)

G191A, T341C, G590A, G857A (100%) G191A, T341C, G590A, G857A (100%)

aThe classification rate achieved in the decision tree constructed from each sample data is shown in parenthesis. It is averaged across all cross-validation intervals and
all runs. The tree-based analysis of the two African samples providedmore than one tree when we changed the significance level of the pruning procedure from 0.01
to 10�6. We chose to select the tree enabling the best discrimination between slow and rapid acetylators (i.e., the tree which minimized the misclassification rate).
bThe average classification rate of each selected model is shown in parenthesis. It is averaged across all cross-validation intervals and all runs, and indicates how well
the model performs on the whole data set. We selected for each sample themost parsimonious multifactor models that display an average classification rate equal or
very close to the 100% value. All selected models are statistically significant at the 0.001 level.
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instead of causal variants, are used diagnostically. A marker
that has been associated with a phenotype in a given popula-
tion, but that is not itself causal, is likely to have less or even no
diagnostic value in other ethnic groups.42 All this justifies why
marker selection strategies should be applied separately, at
least within different geographic areas. However, the fact that
the subset of SNPs ascertained in German samples was also
selected in the other European samples, and the same combi-
nation of SNPs was found in the two Black African popula-
tions, provides some reassurance that within themajor human
ancestral geographic groups, the SNPs to be targeted in geno-
typing tests are portable among populations.
From our findings in the European population samples

studied, we can deduce that, for the purpose of phenotype
prediction, the analysis of mutations at 282T and 341C would
be enough to obtain a good predictive capacity in these popu-
lations, with no reduction in power relative to direct assays of
all seven common SNPs. The analysis of these two polymor-
phismswould offer at a low cost a typingmethodology that can
be carried out in few hours and that avoids the use of probe
drugs. This finding should encourage the routine typing of
acetylator status in clinical practice in order to ensure ad-
equated drug therapywithminimal or no toxic effects. Since all
the majorNAT2 haplotypes are expected to be shared between
the general European-derived populations, it is reasonable to
expect that this combination of SNPs will also perform well in
other populations of European origin. In Asian populations,
two main ‘slow’ alleles, NAT2*6A and NAT2*7B, have been
shown to predominate at NAT2,43 and they can be both char-
acterized by the C282T polymorphism. This explains why this
marker alone is able to predict the slow acetylator phenotype
with such a high probability in the Korean sample. Since the
Chinese, Japanese, Korean, and Thai populations show com-
parable NAT2 allele frequencies, this finding is also likely to
hold in other populations along the Pacific Asian littoral. In
contrast, in BlackAfrican populations,more SNPs are required
to predict the individual acetylator status. These populations
are indeed haplotypicallymore diverse atNAT2 and, since they
display lower levels of LD at this locus, SNPs are poor markers
of each other in these populations.22 These features have been
observed for many other loci thanNAT2. The geographic pat-
terns reported in most studies of nucleotide variability in hu-
mans generally reveal more variation in sub-Saharan African
populations than in other continental regions, and this obser-
vation is often interpreted as evidence for the out-of-Africa
model.44–47 Furthermore, reviews of published data based on
analyses of multiple loci show strong variation of LD patterns
among major continental groups, Africans displaying lower
levels of LD compared to samples from other parts of the
world.48–51 Because linkage disequilibrium decreases through
time, as a result of recombination, levels of disequilibrium can
be correlatedwith the relative “age” of a population, with older
populations having less disequilibrium. The linkage disequi-
librium results are thus also consistent with an African origin
of modern humans. In the West African and South African
samples investigated in our study, the same optimal set of SNPs

was selected. But since African populations are significantly
differentiated, further surveys on the genetic variation of
NAT2 throughout sub-SaharanAfrica are needed to determine
to what extent this same subset of markers will work ade-
quately in other African populations.
In order to simplify the typing of the NAT2 gene, several

authors20,28,52 advocated the analysis of only themost prevalent
mutations producing a defective NAT2 function to predict
acetylation phenotype in clinical settings. However this crite-
rion for marker selection is not necessary the most efficient
one: looking at the patterns of LD between the different sites
may be also useful. Indeed we showed in this study that a silent
polymorphism, C282T, could be predictive of the presence of
two enzyme-inactivating mutations due to extensive LD be-
tween these markers. This feature offers the possibility to re-
duce the number of SNPs to be targeted in a genotyping test.
While the three classification methods investigated in this

study produced comparable results for all studied samples,
they provide different kinds of information that can be used in
a complementarymanner. Indeed, the tree-basedmethod gen-
erates a decision-tree model that provides simple rules to clas-
sify subjects into slow and rapid acetylators according to their
unphased multi-locus genotypes. For instance, in the case of
the German sample, the acetylator status of an individual can
be predicted from his genotype at only two SNPs, and there is
no need to resolve haplotype phase. Furthermore, one may
decide to type only the T341C SNP in a first step, and if the
subject is homozygous for the 341C allele, genotype data at the
second SNP would be no further needed. Of course each deci-
sion-tree is population-specific and can only be used to predict
the acetylation phenotype of individuals of the same ethnic
background. However, the tree-based approach often yields a
unique solution and, since it does not evaluate the perfor-
mance of all possible combinations of SNPs, it does not pro-
vide any information on the additional markers to type if one
wants to improve the discrimination power of the classifica-
tion tree. This information is available when using the two
other approaches, neural network and MDR analyses, which
determine the best model for each SNP combination level
tested. The drawback of the MDR method is that, although it
gives useful guidelines to select the most informative markers
for phenotype prediction, it is not able to predict acetylator
status from individual multi-locus genotypes. In contrast, the
neural network approach offers the possibility, once trained
with the NAT2 genotype data of a given ethnic group, to pre-
dict the acetylator phenotype of a new subject of the same
ethnic background. Furthermore, the ability of this method to
identify alternative minimal subsets of SNPs, when available,
can be valuable in practice when individual SNPs prove diffi-
cult to genotype.
In the particular case of theNAT2 gene, the three classifica-

tion methods appear to perform similarly but it is still possible
that, under different conditions (longer gene, larger haplotype
diversity, different patterns and/or levels of LD), one method
stands out from the others.
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More traditional statistical tests exist that permit dealing
with the same issue raised in this paper; that is, selection of the
most informative SNPs for the prediction of a discret pheno-
type. To compare the performance of classical statistical ap-
proaches with that of the three classification methods investi-
gated in this study, we performed additional analyses using
logistic regression and discriminant analysis. Identical results
were obtained: the same optimal subsets of SNPs were pointed
out in each study sample by both methods (data not shown).
This is not surprising since the phenotype-genotype relation-
ship underlying the acetylation polymorphism is quite simple
and of the linear type. However, in more complex cases where
multiple predictive features interact and correlate with out-
comes in complex ways, the use of systems able to afford non
linear tasks, like artificial neural networks or MDR method,
should allow a better discriminating capacity in comparison
with classical statistics. In fact, there have beenmany successful
applications of these classification methods in genetic and ep-
idemiological studies. For instance, the recent study of Di Luca
et al.53 demonstrated that neural networks were more efficient
than conventional statistical analyses to predict the presence
of Alzheimer disease in early stages. Similarly, Tomita et al.38

showed that neural networks discriminated cases from con-
trols more precisely than logistic regression for diagnostic
prediction of childhood allergic asthma. As these classification
methods are easy-to-use, not time-consuming, and all imple-
mented in freely-available and user-friendly softwares, they
constitute interesting alternatives to classic parametric statis-
tics. They should be of great use when applied to a large num-
ber of polymorphisms within a group of several interacting
genes involved in a common pathway of drug response (e.g.,
genes that encode enzymes that act at different points in the
metabolism of a drug or genes that encode a receptor complex).

CONCLUSION

This paper reports the first attempt to use classification ap-
proaches in pharmacogenetic analyses to predict one individ-
ual’s drug response. It presents an innovative use of three clas-
sification methods which appear to be efficient and reliable
techniques for selecting the most informative set of markers
within a gene or a group of genes to predict one individual’s
metabolizer status. The results of this study will be helpful for
the design of cost-and time-effective genotyping strategies,
adapted to specific populations, to predict acetylation pheno-
type. This should facilitate the introduction of pharmacoge-
netic tests into widespread clinical practice.
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