How frequent is altered gene expression among susceptibility genes to human complex disorders?

Philippe H. Jais, MD, PhD

It is regularly thought that human complex disorder susceptibility genes show differences in gene expression between normal and pathologic tissues. Thus, differences of transcript amounts could be indicative of complex disorder susceptibility loci and, therefore, be used for the discovery or the validation of human susceptibility genes to complex disorders/traits. Whether human complex disorder susceptibility genes effectively display differences in transcript amounts was tested by meta-analysis of the published literature comparing transcript amounts of well-validated human susceptibility genes to complex traits/disorders. A total of 94 gene-disease associations, which were studied in at least three independent studies and showed strong evidence of positive association, were analyzed. For 23 out of these 94 well-validated gene-disease associations, 120 gene expression studies comparing normal and pathologic human tissues were found. For 60 out of these 120 gene expression studies, the difference of level expression between normal and pathologic human tissues was statistically significant. This result was highly significant, as only 6 significant results were expected randomly under the null hypothesis (P < 10^{-112}). A large excess of replication studies were also found, which were in agreement with the original report $(P = 6 \times 10^{-4})$. However, the overall level of expression change between normal and pathologic human tissues was relatively moderate, because only 36 (60%) and 19 (31.6%) out of the 62 statistically significant gene expression studies reached 2- or 3-fold changes in expression level, respectively. The present meta-analysis confirms statistical differences of expression levels between normal and pathologic human tissues for human susceptibility genes to complex traits/disorders. However, the levels of differences in transcript amounts appear to be relatively weak. These findings rationalize the use of gene expression for the discovery/validation of human susceptibility genes, but the weak differences of expression typically found should be taken into account for the design of such studies. Genet Med 2005:7(2):83-96.

Key Words: microarrays, RNA, expression, QTL, association.

A number of variations of human DNA are likely to alter gene transcription rates. For instance, promoter and splice junction polymorphisms, which can change transcription rates^{1,2} and RNA stability,³ occur on average every 5.3 and 6.5 bases per kilobase of human DNA, respectively.⁴ Likewise, such DNA variations can be associated with complex traits/ disorders either directly or indirectly through linkage disequilibrium with susceptibility loci. Therefore, differences of transcript abundance between series of cases and controls can be indicative of association to susceptibility loci, rationalizing the use of differences of gene expression level as a surrogate marker for complex traits or disorders.⁵

The aim of the present meta-analysis was to evaluate whether complex disorder susceptibility loci show differences in gene expression between normal and affected tissues. This

From Chiasma Laboratories, Paris, France.

Philippe Jais, MD, PhD, CHIASMA, 15 rue du Petit Musc, 75004 Paris, France. Received: Iune 9, 2004.

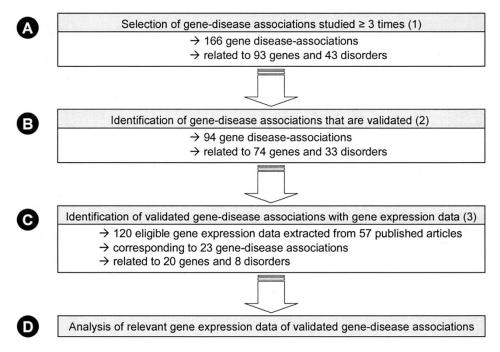
Receivea: June 9, 2004.

Accepted: November 3, 2004.

DOI: 10.1097/01.GIM.0000153665.55420.C3

question was addressed by meta-analysis of all studies related to well-validated human gene-disease associations that have compared transcript amounts between series of normal and pathologic tissues. The present findings clearly demonstrate

review


that statistical differences in transcript levels of disease susceptibility genes are found between normal and pathologic human tissues. These results rationalize the use of comparative gene expression analysis for gene discovery studies. However, the relatively weak levels of differences in transcript amounts were found, which should be taken into account for the design of gene discovery studies based on gene expression studies.

METHODS

Literature search and inclusion criteria

To search for eligible studies, the MEDLINE citations up to May 2003 using the National Library of Medicine's PubMed online search engine were surveyed. The search was limited to English language literature. For gene-disease association retrieval, I combined the official symbol of the gene as defined by Human Gene Nomenclature or its alternative aliases, plus the

Copyright © American College of Medical Genetics. Unauthorized reproduction of this article is prohibited

Fig. 1. Flowchart of the data analysis used for this article. A, Analysis focused on the 166 gene-disease associations reported by Hischhorn et al.⁸ as being tested at least three times in independent studies. These 166 gene-disease associations were related to 93 genes and 43 disorders. B, Then, I searched for gene-disease associations fulfilling the criteria reported by Lohmueller et al.⁹ as strongly predictive of replication in further allelic case-control association studies. 94 out of the 166 gene-disease associations involving 74 genes and 33 disorders fulfilled these criteria. C, Then, I searched for gene expression studies among these well-validated gene-disease associations. A total of 120 expression studies extracted from 57 articles were found. These expression studies involved 23 gene-disease associations, which were related to 20 genes and 8 disorders; (D) these 120 gene expression studies provided the material used for the present statistical meta-analysis.

name(s) of the disease, plus at least one of the keywords association or polymorphism or allele. For the selection of the gene expression studies, I combined the official symbol of the gene or its alternative aliases, plus the name of the disease, plus one of the keywords: transcript or mRNA or RNA or expression.

The abstracts from the literature search were screened to select relevant studies. The articles were read, and all relevant references cited in these studies were recovered to identify additional works unidentified in the PubMed screen.

Selection of validated gene-disease associations

The analysis is based on the 166 gene-disease associations reported by Hischhorn et al.⁸ as being tested at least three times in independent studies. These 166 gene-disease associations were related to 93 genes and 43 disorders (Fig. 1). This analysis included all published associations between human common disease or dichotomous trait and common polymorphisms (defined as having a minor allele frequency over 0.01) located within or in the vicinity of the investigated genes. This review excluded the polymorphisms in HLA or blood groups, as well as association studies for substance abuse and laboratory findings. In addition, only the associations between variation at single locus and susceptibility to disease in the entire population were taken into account by Hischhorn et al.⁸

I next focused the analysis on gene-disease associations that have been well-validated in the published literature. Therefore, I have searched among the 166 previous gene-disease associations those that fulfilled the criteria reported by Lohmueller et

al.9 as strongly predictive of positive association on a sample of 25 gene-disease associations. These criteria were established on the fact that most of the 8 gene-disease associations supported by previously published meta-analysis met those criteria, whereas most of the remaining 17 did not.9 These criteria are, in addition to the initial positive study achieving P < 0.05, at least two additional independent studies with P < 0.01 or a single study reaching P < 0.001. When more than one polymorphism in a gene had been studied, all polymorphisms corresponding to this gene were considered simultaneously. As a result, 94 gene-disease associations involving 74 genes and 33 disorders/traits fulfilled these conservative criteria (Fig. 1 and Table 1). Consequently, some of these genes were associated with two or more diseases (mean, 1.34; range, 1-5), such as TNF, which is involved in Alzheimer disease, obesity, type I diabetes, type II diabetes, and asthma. Interestingly, 33 out of these 74 genes (44.6%) were also found associated to Mendelian-inherited diseases according to the Genatlas database. This strongly suggests that some genes can be responsible at the same time of a rare Mendelian-inherited form of a disorder caused by highly penetrant alleles, but also in their much more common multigenic form through less penetrant alleles. Although the molecular mechanisms associated with these differences of inheritance have not been investigated in detail, the changes due to Mendelian-inherited disorders can reasonably be expected to have more drastic effect on gene function than the variations predisposing to common multigenic forms of the disorder.

Copyright © American College of Medical Genetics. Unauthorized reproduction of this article is prohibited.

Altered gene expression in human susceptibility genes

Table 1
Gene-disease associations

Gene	Disease/trait	# OMIM	Aliases	First positive article	Mendelian disorder
A2M	Alzheimer's disease	103950	Alpha-2-macroglobulin	10	103950, emphysema with lung destruction II (macroglobulin, alpha-2-deficiency)
ABCC8	Diabetes type 2	600509	Sulfonylurea receptor; SUR	11	256450, pancreatic nesidioblastosis
ACE^{a}	CAD/MI	106180	Angiotensin converting enzyme; DCP1; dipeptidyl carboxypeptidase 1	12	No
ACE	Hypertension	106180	Angiotensin converting enzyme; DCP1; dipeptidyl carboxypeptidase 1	13	No
ACE .	Ischemic stroke/carotid atheroma	106180	Angiotensin converting enzyme; DCP1; dipeptidyl carboxypeptidase 1	14	No
DD1	Hypertension	102680	Alpha adducin 1	15	No
ADRB2	Obesity	109690	Beta 2 adrenergic receptor	16	No
ADRB3	Obesity	109691	Beta 3 adrenergic receptor	17	No
AGTR1	Hypertension	106165	Angiotensin II receptor, type 1	18	No
APOB	CAD/MI	107730	Apolipoprotein B	19	200100, abetalipoproteinemia
APOC1 ^a	Alzheimer's disease	107710	Apolipoprotein-C1; Apolipoprotein C1	20	No
APOE ^a	Alzheimer's disease	107741	Apolipoprotein E	21	107741, familial dysbetalipoproteinemia, hyperlipoproteinemia ty III
APOE	CAD/MI	107741	Apolipoprotein E	22	107741, familial dysbetalipoproteinemia, hyperlipoproteinemia typ III
APOE	Ischemic stroke	107741	Apolipoprotein E	23	107741, familial dysbetalipoproteinemia, hyperlipoproteinemia typ III
APOE	Tacrine Response	107741	Apolipoprotein E	24	107741, familial dysbetalipoproteinemia, hyperlipoproteinemia typ III
APOE	Overall mortality	107741	Apolipoprotein E	25	107741, familial dysbetalipoproteinemia, hyperlipoproteinemia typ III
IR	Male infertility	313700	Androgen receptor	26	300068, androgen insensity syndrome; 313200, Kennedy syndrom
IR	Prostate cancer	313700	Androgen receptor	27	300068, androgen insensity syndrome; 313200, Kennedy syndrom
BCHE	Alzheimer's disease	177400	Butyrylcholinesterase	28	177400, postanesthetic apnea
CCR2	HIV infection/AIDS	610267	Chemokine (C-C motif) receptor 2; CKR2; CMKBR2	29	No
CCR5	HIV infection/AIDS	601373	Chemokine (C-C motif) receptor 5; CKR5; CMKBR5	29	No
COLIAI	Osteoporosis/fracture	120140	Collagen, type I, alpha 1	30	130060 Ehlers-Danlos syndrome TYPE VII; 166210, osteogenesis imperfecta type II; 259420 type III; and 166220 type IV
COMT ^a	Bipolar disorder	116790	Catechol-O-methyltransferase	31	No
COMT	Schizophrenia	116790	Catechol-O-methyltransferase	32	No
CTLA4	Diabetes type 1	123890	Cytotoxic T-lymphocyte-associated protein 4; CD153	33	No
CTLA4	Graves' disease	123890	Cytotoxic T-lymphocyte-associated protein 4; CD152	33	No
CTLA4	Systemic lupus erythematous	123890	Cytotoxic T-lymphocyte-associated protein 4; CD154	34	No
CYBA	CAD/MI	233690	Cytochrome b-245 alpha; p22-PHOX	35	233690, chronic granulomatous disease
CYP11B2	Hypertension	124080	Aldosterone synthase; steroid 11-beta-hydroxylase	36	203400, congenital hypoaldosteronism
CYP1A1	Breast cancer	108330	Cytochrome P450, subfamily 1A, polypeptide 3	37	No
CYP2D6	Parkinson's disease	124030	Cytochrome P450, subfamily IID, polypeptide 6	38	124030, debrisoquine sensitivity including neuroleptic malignant syndrome
CYP2E	Lung cancer	124040	Cytochrome P450, subfamily IIE; CYP2E2	39	No
DRD2 ^a	Schizophrenia	126450	Dopamine receptor D2	40	159900, hereditary essential myoclonus and myoclonic dystonia
DRD3	Clozapine response	126451	Dopamine receptor D3	41	No
DRD3 ^a	Schizophrenia	126451	Dopamine receptor D3	42	No
DRD4	ADHD	126452	Dopamine receptor D4	43	No
ESR1	Osteoporosis/fracture	133430	Estrogen Receptor 1	44	133430, estrogen resistance with defect of bone maturation and mineralization
F2	Deep Venous Thrombosis	176930	Prothrombin; coagulation factor II	45	176930, autosomal dominant dysprothrombinemia
72	Ischemic stroke	176930	Prothrombin; coagulation factor II	46	176930, autosomal dominant dysprothrombinemia
F5	Deep Venous Thrombosis	227400	Coagulation factor V	47	227400, parahemophilia
F5	Pre-eclampsia	227400	Coagulation factor V	48	227400, parahemophilia
F7	CAD/MI	227500	Coagulation factor VII	49	227500, hypoproconvertinemia

February 2005 · Vol. 7 · No. 2

pyright © American College of Medical Genetics. Unauthorized reproduction of this article is prohibited

Table 1	
(Continued)	

Gene	Disease/trait	# OMIM	Aliases	First positive article	Mendelian disorder
FCGR2A	Systemic lupus erythematous	1467901	CD32; Fc IgG low affinity IIa receptor	50	No
GCGR	Diabetes type 2	138033	Glucagon receptor	51	No
GCK	Diabetes type 2	138079	Glucokinase; MODY2; hexokinase 4	52	125853, MODY2; 602485, autosomal dominant hyperinsulinism; 601410, permanent neonatal diabetes mellitus
GNB3	Hypertension	139130	G-protein beta, polypeptide 3	53	No
GP1BA	CAD/MI	231200	Platelet glycoprotein Th, alpha polypeptide	54	231200, Bernard-Soulier syndrome
GSTM1	Bladder cancer	138350	Glutathione S-transferase MI; glutathione S-transferase mu-1	55	No
GSTM1	Lung cancer	138350	Glutathione S-transferase MI; glutathione S-transferase mu-1	56	No
GYS1 ^a	Diabetes type 2	138570	Glycogen synthase (muscle); GYS	57	No
HTR2A	Anorexia	182135	5-hydroxytryptamine (serotonin) receptor 2A; HTR2	58	No
HTR2A	Clozapine response	182135	5-hydroxytryptamine receptor 2A; serotonin receptor 2A; HTR2	59	No
HTR2A ^a	Schizophrenia	182135	5-hydroxytryptamine receptor 2A; serotonin receptor 2A; HTR2	60	No
LIRA	Osteoporosis/fracture	147810	Interleukin-1 receptor antagonist	61	No
$L4^{a}$	Asthma	147780	Interleukin 4	62	No
$L4R^{a}$	Asthma	147781	Interleukin 4 receptor	63	No
'L6	Osteoporosis/fracture	147620	Interleukin-6; IL-6	64	No
NS	Diabetes type 1	176730	Insulin	65	176730, diabetes with hyperproinsulinemia
NS	Diabetes type 2	176730	Insulin	66	176730, diabetes with hyperproinsulinemia
RS1 ^a	Diabetes type 2	147545	Insulin receptor substrate 1	67	No
TGB3	CAD/MI	173470	Glycoprotein IIIa; integrin, beta-3; CD61	68	273800, Glanzmann thrombasthenia
CNN3	Schizophrenia	602983	hKCa3; SKCA3; SK3; hSK3	69	No
EP^{a}	Obesity	164160	Leptin; OB	70	164160, severe early-onset obesity
.PL	CAD/MI	238600	Lipoprotein lipase	71	238600, hyperchylomicronemia
.TA	Multiple sclerosis	153440	Tumor necrosis factor beta; TNFB; Lymphotoxin-alpha	72	No
ABL2	Systemic lupus erythematous	154545	Mannose binding lectin; mannose binding protein; MBP1	73	154545, recurrent infections
ЛВР	Multiple sclerosis	159430	Myelin basic protein	74	No
MTHFR	CAD/MI	236250	5, 10-methylene tetrahydrofolate reductase	75	236250, developmental delay with gait
MTHFR	Deep Venous Thrombosis	236250	5,10-methylene tetrahydrofolate reductase	76	236250, developmental delay with gait
VOS3	CAD/MI	163729	Endothelial nitric oxide synthase; ENOS	77	No
PON1	CAD/MI	168820	Paraoxonase 1	78	No
PPARG ^a	Diabetes type 2	601487	Peroxisome proliferator-activated receptor gamma; PPARgamma	79	604367, insulin resistance with non insulin dependent diabetes mellitus
PPARG ^a	Obesity	601487	Peroxisome proliferator-activated receptor gamma; PPARgamma	79	604367, insulin resistance with non insulin dependent diabetes mellitus
PRNP	Creutzfeldt-Jakob disease	176640	Prion protein; PRP	80	123400, Creutzfeldt-Jakob disease
SEN1 ^a	Alzheimer's disease	104311	Presenilin 1; PS1; AD3	81	104300, Alzheimer disease
RSTN	Diabetes type 2	605565	Resistin; FIZZ3	82	No
ERPINA1	COPD/emphysema	107400	Alpha-1-antitrypsin; protease inhibitor I; PI	83	107400, severe emphysema; 107400, hemorrhagic diathesi
ERPINA3	Alzheimer's disease	107280	Alpha-1-antichymotrypsin; AACT	84	107280, severe emphysema
ERPINA8 ^a	CAD/MI	106150	Angiotensinogen; AGT	85	No
ERPINA8 ^a	Hypertension	106150	Angiotensinogen; AGT	86	No
ERPINE1	CAD/MI	173360	Plasminogen activator inhibitor 1; PAI 1	87	173360, bleeding diathesis; 173360, recurrent thrombosis
SLC2A1	Diabetes type 2	138140	GLUT1; glucose transporter 1	88	138140, infantile seizures with microcephaly and hypoglycorrhachia
SLC6A4 ^a	Bipolar disorder	182138	SERT; Serotonin transporter; 5HTT	89	No
INF	Asthma	191160	Tumor necrosis factor alpha; TNFA	90	No
INF	Diabetes type 1	191160	Tumor necrosis factor alpha; TNFA	93	No
"NF ^a	Diabetes type 2	191160	Tumor necrosis factor alpha; TNFA	94	No
CNF^{a}	Obesity	191160	Tumor necrosis factor alpha; TNFA	91	No

Genetics IN Medicine

Copyright © American College of Medical Genetics. Unauthorized reproduction of this article is prohibited.

			(Continued)		
Gene	Disease/trait	# OMIM	Aliases	First positive article	Mendelian disorder
TNF	Psoriasis/psoriatic arthritis	191160	Tumor necrosis factor alpha; TNFA	92	No
TP53	Head and neck cancer	191170	Tumor necrosis factor alpha; TNFA	95	151623, Li-Fraumeni syndrome
UCP1 ^a	Obesity	113730	Uncoupling protein 1	96	No
$UCP2^{a}$	Obesity	601693	Uncoupling protein 2	97	No
UCP3 ^a	Obesity	602044	Uncoupling protein 3	98	602044, severe obesity and type 2 diabetes mellitus
VDR	Osteoporosis/fracture	601769	Vitamin D receptor	99	277440, vitamin D-dependent rickets
VLDLR	Alzheimer's disease	192977	Very low density lipoprotein receptor	100	No

Table 1

Gene-disease associations that were studied in at least three independent studies and showed strong evidence of positive association according to the criteria reported by Lohmueller et al.⁹ These criteria are, in addition to the initial positive study achieving P < 0.05, at least two additional independent studies with P < 0.01 or a single study reaching P < 0.001.

^aThe 23 gene-disease associations for which gene expression has been studied (see Table 2).

Gene expression studies

Subsequently, I searched for published gene expression studies among the 94 well-validated gene-disease associations (Fig. 1). All studies based on quantitative gene expression methods were used for analysis, including semiquantitative RT-PCR, competitive RT-PCR, real-time quantitative PCR, RT-PCR ELISA, branched DNA, cDNA or oligonucleotide microarrays, quantitative Northern-blot, dot-blot, RNase protection assay, serial analysis of gene expression (SAGE), and quantitative in situ hybridization. No relevant microarray data were found and used in the present analysis. In some articles, several genes and/or methods of quantification have been assayed simultaneously, the results of which were treated separately. Only the studies providing enough details to recalculate the distribution of expression in case and control groups were selected for analysis. In addition, the studies with less than five controls or five cases were excluded for analysis because poor reliability (n = 7). In total, 120 expression studies extracted from 57 published articles were reviewed (Fig. 1). Consequently, some articles investigated simultaneously the expression of several genes. These 120 gene expression studies were related to 23 gene-disease associations, which correspond to 20 genes and 8 disorders (Table 2). Twelve out of these 23 gene-disease associations were screened for allelic association before gene expression studies, whereas 11 were screened for allelic association following gene expression studies. In 62 out of these 120 expression studies, the values of control and case groups were established using the figures of the original publication as details were lacking in the text of the article. In these cases, each value was assessed blindly at least three times using maximum magnified copies of the figures.

Statistical analysis

For each gene expression study, the statistical difference between case and control groups was assessed by unpaired two-tailed Student's *t*-test using untransformed original variables. Statistical comparisons were considered significant at P < 0.05. To test the effects of various parameters on the gene expression ratio, a univariate analysis by the linear model procedure using type III sums of squares model was performed. Multivariate analysis was achieved by logistic regression model with a forward stepwise search. In both univariate and multivariate analysis, the expression criteria used for analysis was the gene expression threshold below or above 2-fold change between case and control samples.

Statistical analyses were performed with the SPSS 11.5 software (SPSS Inc., Chicago, IL).

RESULTS AND DISCUSSION

The present meta-analysis aimed to determine whether well-validated human complex disorder susceptibility genes show differences in gene expression between normal and pathologic tissues. Therefore, the published literature was first screened to select well-validated gene-disease associations for complex human traits/disorders. The analysis was based on a set of 166 gene-disease associations reported by Hischhorn et al.⁸ as being studied in at least three different studies. Then, the published literature up to May 2003 was screened to select which of these 166 gene-associations fulfilled the criteria reported by Lohmueller et al.⁹ as strongly predictive of future replication. A total of 74 genes and 33 disorders involved in 94 gene-disease associations fulfilled these criteria (Fig. 1 and Table 1).

Then, these genetically well-validated genes were analyzed for differential transcript expression in pathologic conditions. In total, 120 expression records involved in 23 gene-disease associations were found (Fig. 1). For each study, the statistical difference of gene expression was calculated by unpaired two-tailed Student *t* test using the original data set (Table 2). From these 120 gene expression studies, 60 (50%) achieved *P* < 0.05, which should be compared to 6.0 significant results expected randomly under the null hypothesis of no gene expression change. This result was highly significant, as the nominal value obtained by reference to the χ^2 -distribution was 513.4 (χ^2 -test, 1 degree of freedom; *P* < 10⁻¹¹²). In theory, publication bias

Table 2

Details of gene expression studies comparing normal and pathological human tissues for the 23 well-validated human susceptibility genes to complex disorders/ traits (see Table 1)

Gene	Disease/trait	Country	mRNA isoform	Tissue	Main phenotype of controls	No. of controls	Main phenotype of cases	No. of cases	Method of measure	Ratio	P value	Ref.
ACE	CAD/MI	Italy	Canonical	Heart, left ventricular wall	Controls with normal coronarography	21	Individuals with stable angina	32	In-situ hybridization	1,26	5.61E-02	101
ACE	CAD/MI	Italy	Canonical	Heart, left ventricular wall	Controls with normal coronarography	21	Individuals with unstable angina	35	In-situ hybridization	2,02	1.16E-05	101
APOC1	Alzheimer's disease	Canada	Canonical	Brain, prefrontal cortex	Controls without dementia and neuropathological change to Alzheimer disease	11	Individuals with Alzheimer disease with neuropathological changes	19	RNase Protection Assay	0,57	5.55E-02	102
APOE	Alzheimer's disease	Japan	Canonical	Skin fibroblasts	Controls without dementia	10	Individuals with Alzheimer disease according to DSM-IIIR criteria	18	Quantitative Northern- blot	0,63	1.04E-03	103
APOE	Alzheimer's disease	Canada	Canonical	Brain, prefrontal cortex	Controls without dementia and neuropathological change to Alzheimer disease	11	Individuals with Alzheimer disease with neuropathological changes	20	RNase Protection Assay	0,65	1.78E-02	102
APOE	Alzheimer's disease	Japan	Canonical	Brain, temporal cortex	Controls with neurological disease without dementia	20	Individuals with sporadic Alzheimer disease	27	Quantitative RT-PCR	1,42	3,24E-02	104
APOE	Alzheimer's disease	USA	Canonical	Brain, hippocampus	Controls with non-Alzheimer neurological disorder	9	Individuals with Alzheimer disease	7	In-situ hybridization	1,70	2.51E-09	105
COMT	Schizophrenia	USA	Canonical	Brain, frontal superior gyrus	Controls without history of psychiatric disorder	10	Schizophrenia not treated with antipsychotics	14	Competitive RT-PCR	2,13	8.85E-02	106
COMT	Schizophrenia	USA	Canonical	Brain, middle temporal gyrus	Controls without history of psychiatric disorder	10	Schizophrenia not treated with antipsychotics	13	Competitive RT-PCR	0,50	4.72E-02	106
COMT	Schizophrenia	USA	Canonical	Brain, superior temporal gyrus	Controls without history of psychiatric disorder	10	Schizophrenia not treated with antipsychotics	9	Competitive RT-PCR	0,74	4.87E-01	106
DRD2	Schizophrenia	United Kingdom	DRD2 short isoform	Brain, ventro orbital gyrus	Controls with no details	11	Schizophrenics with no details	11	Quantitative RT-PCR	1,39	8.72E-03	107
DRD2	Schizophrenia	United Kingdom	DRD2 long isoform	Brain, ventro orbital gyrus	Controls with no details	11	Schizophrenics with no details	11	Quantitative RT-PCR	1,55	2.84E-03	107
DRD2	Schizophrenia	United Kingdom	DRD2 short isoform	Brain, inferior temporal gyrus	Controls with no details	13	Schizophrenics with no details	9	Quantitative RT-PCR	1,39	2.10E-02	107
DRD2	Schizophrenia	United Kingdom	DRD2 long isoform	Brain, inferior temporal gyrus	Controls with no details	13	Schizophrenics with no details	9	Quantitative RT-PCR	1,38	5.38E-02	107
DRD2	Schizophrenia	United Kingdom	DRD2 short isoform	Brain, polar frontal cortex	Controls with no details	19	Schizophrenics with no details	13	Quantitative RT-PCR	0,97	7.75E-01	107
DRD2	Schizophrenia	United Kingdom	DRD2 long isoform	Brain, polar frontal cortex	Controls with no details	19	Schizophrenics with no details	13	Quantitative RT-PCR	0,97	8.08E-01	107
DRD2	Schizophrenia	United Kingdom	DRD2 short isoform	Brain, caudate nucleus	Controls with no details	15	Schizophrenics with no details	9	Quantitative RT-PCR	1,60	6.79E-02	107
DRD2	Schizophrenia	United Kingdom	DRD2 long isoform	Brain, caudate nucleus	Controls with no details	15	Schizophrenics with no details	9	Quantitative RT-PCR	1,98	7.03E-02	107
DRD2	Schizophrenia	Canada	DRD2 long and short isoforms		Controls without psychiatric disorder	7	Schizophrenics according to DSM-IV criteria treated or not with neuroleptics	11	Competitive RT-PCR	0,20	7.44E-03	108
DRD2	Schizophrenia	Canada	DRD2 long isoform	Brain, frontal cortex	Controls without psychiatric disorder	7	Schizophrenics according to DSM-IV criteria treated or not with neuroleptics	7	Competitive RT-PCR	1,86	6.05E-02	108
DRD3	Schizophrenia	Israel	Canonical	Lymphocytes	Controls without psychiatric disorder according to DSM- IV criteria	6	Schizophrenics according to DSM-IV criteria treated or not	6	PCR-Elisa	0,81	3.01E-01	109
DRD3	Schizophrenia	Israel	Canonical	Lymphocytes	Controls without psychiatric disorder according to DSM- IV criteria	14	Schizophrenics according to DSM-IV criteria treated or not	14	Quantitative RT-PCR	3,70	5.77E-02	109
DRD3	Schizophrenia	Korea	Canonical	Lymphocytes	Controls without psychiatric disorder according to DSM- IV criteria	31	Schizophrenics naive or free of neuroleptic therapy	43	Real-time RT-PCR	7,32	1.28E-24	110
GYS1	Diabetes type 2	France	Canonical	Skeletal muscle	Controls with normal glucose tolerance and no family history of diabetes	9	Diabetics type 2	8	Competitive RT-PCR	0,56	1.90E-02	111
GYS1	Diabetes type 2	France	Canonical	Skeletal muscle	Lean controls with normal glucose tolerance	17	Diabetics type 2	9	Competitive RT-PCR	0,73	2.37E-01	112
GYS1	Diabetes type 2	France	Canonical	Skeletal muscle	Obese individuals with normal glucose tolerance	9	Diabetics type 2	9	Competitive RT-PCR	0,66	1.17E-01	112

Genetics IN Medicine

Copyright © American College of Medical Genetics. Unauthorized reproduction of this article is prohibited.

Table 2
(Continued)

Gene	Disease/trait	Country	mRNA isoform	Tissue	Main phenotype of controls	No. of controls	Main phenotype of cases	No. of cases	Method of measure	Ratio	P value	Re
GYS1	Diabetes type 2	USA	Canonical	Skeletal muscle	Non-diabetic controls, non- obese	8	Diabetics type 2 with obesity	11	RNase protection assay	0,69	5.09E-02	113
GYS1	Diabetes type 2	Sweden	Canonical	Skeletal muscle	Non-diabetic controls	12	Diabetics type 2	12	Primer-dropping RT- PCR	1,43	9.21E-03	114
GYS1	Diabetes type 2	Finland	Canonical	Skeletal muscle	Non-diabetic controls	17	Diabetes type 2	14	Dot-blot	0,88	4.90E-02	115
GYS1	Diabetes type 2	Denmark	Canonical	Skeletal muscle	Controls with normal glucose tolerance and no family history of diabetes	14	Diabetics type 2	14	Quantitative Northern- blot	0,72	6.81E-09	116
YS1	Diabetes type 2	Denmark	Canonical	Skeletal muscle	Controls without diabetes and family history of diabetes	19	Diabetics type 2	19	Quantitative Northern- blot	0,73	3.76E-03	117
ITR2A	Schizophrenia	United Kingdom	Canonical	Brain, prefrontal cortex	Controls with no details	12	Schizophrenics with no details	12	In-situ hybridization	0,52	1.13E-04	11
ITR2A	Schizophrenia	United Kingdom	Canonical	Brain, cingulate cortex	Controls with no details	11	Schizophrenics with no details	9	In-situ hybridization	0,37	6.42E-04	11
ITR2A	Schizophrenia	United Kingdom	Canonical	Brain, dentate gyrus	Controls with no details	13	Schizophrenics with no details	11	In-situ hybridization	0,39	1.05E-03	11
ITR2A	Schizophrenia	United Kingdom	Canonical	Brain, superior temporal gyrus	Controls with no details	13	Schizophrenics with no details	7	In-situ hybridization	0,52	9.57E-03	11
ITR2A	Schizophrenia	United Kingdom	Canonical	Brain, parahippocampal gyrus	Controls with no details	8	Schizophrenics with no details	10	In-situ hybridization	0,86	4.14E-01	11
TR2A	Schizophrenia	USA	Canonical	Brain, superior frontal gyrus	Controls without psychiatric disorder according to DSM- IIIR criteria	14	Schizophrenics according to DSM-IIIR criteria untreated with neuroleptics (> 26 weeks)	7	Competitive RT-PCR	0,40	3.31E-02	11
.4	Asthma	USA	IL4 delta2 isoform	Bronchial samples	Non-asthmatic controls with or without atopy	7	Asthmatics with or without atopy	9	Quantitative RT-PCR	3,49	8.23E-02	12
4	Asthma	USA	Canonical	Bronchial samples	Non-asthmatic controls with or without atopy	7	Asthmatics with or without atopy	9	Competitive RT-PCR	0,78	4.88E-01	1
.4	Asthma	Switzerland	Canonical	Bronchial samples	Non-atopic controls	8	Non-atopic asthma	10	Competitive RT-PCR	2,60	6.70E-03	1
4	Asthma	Switzerland	Canonical	Bronchial samples	Atopic controls	9	Atopic asthmatics	10	Quantitative RT-PCR	2,08	1.61E-01	1
4	Asthma	Switzerland	Canonical	Bronchial samples	Non-atopic controls	6	Non-atopic asthmatics	10	Quantitative RT-PCR	11,30	4.20E-03	1
4	Asthma	Switzerland	Canonical	Bronchial samples	Atopic controls	5	Atopic asthmatics	9	In-situ hybridization	4,77	1.73E-01	1
4	Asthma	Canada	Canonical	Bronchial samples	Non-atopic controls	8	Atopic asthmatics	9	In-situ hybridization	5,92	3.96E-05	1
4	Asthma	Canada	Canonical	Bronchial samples, airways < 2 mm	Non-asthmatics controls, bronchial carcinoma	10	Asthmatics with bronchial carcinoma	6	In-situ hybridization	6,27	4.46E-08	1
4	Asthma	Canada	Canonical	Bronchial samples, airways > 2 mm	Non-asthmatics controls, bronchial carcinoma	10	Asthmatics with bronchial carcinoma	6	In-situ hybridization	5,43	1.40E-08	1
4	Asthma	Canada	Canonical	Sputum	Non-atopic non asthmatic controls	10	Atopic asthmatics	13	In-situ hybridization	8,85	3.77E-08	13
4	Asthma	United Kingdom	Canonical	Bronchoalveolar lavage cells	Non-atopic non-asthmatic controls	10	Atopic asthmatics	10	In-situ hybridization	5,75	4.02E-07	1
AR	Asthma	Canada	Canonical	Bronchial samples	Atopic non-asthmatic controls	7	Atopic asthmatics	8	In-situ hybridization	2,25	2.89E-04	1
AR	Asthma	Canada	Canonical	Bronchial samples	Non-atopic non-asthmatic controls	6	Non-atopic asthmatics	9	In-situ hybridization	2,12	6.90E-03	1
281	Diabetes type 2	France	Canonical	Skeletal muscle	Controls with normal glucose tolerance and no family history of diabetes	9	Diabetics type 2	8	In-situ hybridization	0,60	4.29E-02	1
RS1	Diabetes type 2	France	Canonical	Skeletal muscle	Lean controls with normal glucose tolerance	17	Diabetics type 4	9	Competitive RT-PCR	1,32	2.97E-01	1
RS1	Diabetes type 2	France	Canonical	Skeletal muscle	Obese individuals with normal glucose tolerance	9	Diabetes type 2	9	Competitive RT-PCR	1,10	6.45E-01	1
EP	Obesity	Canada	Canonical	Omental fat	Lean controls (BMI $<$ 27 kg/ $$\rm m^2)$$	11	Obese individuals (BMI $> 30 \mbox{ kg/m}^2)$	12	Competitive RT-PCR	2,68	1.32E-08	1
EP	Obesity	Austia	Canonical	Omental fat	Lean controls without major illness	17	Obese individuals (BMI $> 30~\text{kg/m}^2)$	111	Quantitative RT-PCR	2,78	1.23E-03	1
EP	Obesity	United Kingdom	Canonical	Omental fat	Lean controls (BMI $<$ 25 kg/ $$\rm m^2)$ without diabetes	14	Obese or overweight individuals (BMI \geq 27 kg/m²) without diabetes	9	Quantitative Northern- blot	1,80	8.18E-02	12
EP	Obesity	USA	Canonical	Subcutaneous fat	$\begin{array}{c} \text{Lean controls} (\text{BMI} < 25 \text{kg} / \\ m^2) \end{array}$	8	Obese individuals (BMI $> 30~{\rm kg/m^2})$	8	Quantitative RT-PCR	1,72	1.64E-03	13

February 2005 · Vol. 7 · No. 2

Copyright © American College of Medical Genetics. Unauthorized reproduction of this article is prohibited

Table 2	
(Continued)	

					(Conti	,						
Gene	Disease/trait	Country	mRNA isoform	Tissue	Main phenotype of controls	No. of controls	Main phenotype of cases	No. of cases	Method of measure	Ratio	P value	Ref.
LEP	Obesity	USA	Canonical	Subcutaneous fat	$ \begin{array}{l} \mbox{Lean controls (BMI < 27/kg/$ $$m^2$ for females and < 27.3/$ $$kg/m^2$ for males) without $$ diabetes $$ $\mbox{diabetes}$ \end{tabular} $	27	Obese individuals without diabetes	27	Quantitative RT-PCR	1,54	3.81E-04	131
LEP	Obesity	Austia	Canonical	Subcutaneous fat	Lean controls without major illness	19	Obese individuals (BMI $> 30 \mbox{ kg/m}^2)$	89	Quantitative RT-PCR	2,08	4.13E-04	128
LEP	Obesity	Sweden	Canonical	Subcutaneous fat	Lean women (BMI \leq 27 kg/ m ²) with no major illness	11	Obese women $(BMI > 30 \mbox{ kg/m}^2)$ with no major illness	20	Quantitative Northern- blot	2,54	3.58E-05	132
LEP	Obesity	United Kingdom	Canonical 1	Subcutaneous fat	Lean controls (BMI < 25 kg/ m ²) without diabetes	14	Obese or overweight individuals (BMI $>$ 27/kg/m²) without diabetes	9	In-situ hybridization	1,98	1.52E-02	129
LEP	Obesity	France	Canonical	Subcutaneous fat	Lean controls (BMI < 25 kg/ $\rm{m^2})$	12	Obese individuals (BMI $30 > kg/m^2$)	7	Quantitative RT-PCR	7,70	2.63E-07	133
LEP	Obesity	China	Canonical	Subcutaneous fat	Lean controls (BMI $<$ 24 kg/ $\rm{m^2})$	11	Obese or overweight individuals (BMI $>$ 27 kg/m²) without diabetes	12	Quantitative RT-PCR	1,78	2.78E-03	134
PPARG	Diabetes type 2	France	PPARG isoform 1	Subcutaneous fat	Lean non-diabetic individuals	10	Diabetics type 2	9	Dot-blot	1,32	2.12E-01	135
PPARG	Diabetes type 2	France	PPARG isoform 1	Subcutaneous fat	Obese non-diabetic individuals	10	Diabetics type 2	9	Competitive RT-PCR	1,12	5.10E-01	135
PPARG	Diabetes type 2	France	PPARG isoform 2	Subcutaneous fat	Lean non-diabetic individuals	10	Diabetics type 2	9	Competitive RT-PCR	0,69	2.80E-02	135
PPARG	Diabetes type 2	France	PPARG isoform 2	Subcutaneous fat	Obese non-diabetic individuals	10	Diabetics type 2	9	Competitive RT-PCR	0,92	6.03E-01	135
PPARG	Diabetes type 2	USA	Canonical	Skeletal muscle	Lean controls (BMI \leq 27 kg/ m ²) without diabetes	7	Diabetics type 2	7	Competitive RT-PCR	1,41	1.89E-01	136
PPARG	Diabetes type 2	USA	Canonical	Skeletal muscle	Obese individuals without diabetes	6	Diabetics type 2	7	RNase protection assay	1,12	7.45E-01	136
PPARG	Diabetes type 2	USA	Canonical	Skeletal muscle	Lean controls (BMI $<$ 27 kg/ $$\rm m^2)$ with no diabetes	6	Diabetics type 2	5	RNase protection assay	2,98	4.20E-05	137
PPARG	Diabetes type 2	USA	Canonical	Skeletal muscle	Obese individuals (BMI $>$ 30 kg/m ²) with normal glucose tolerance	5	Diabetics type 2	5	Competitive RT-PCR	1,20	1.84E-01	137
PPARG	Obesity	Austia	Canonical	Omental fat	Lean controls without major illness	20	Obese individuals (BMI $> 30~\text{kg/m}^2)$	76	Competitive RT-PCR	0,97	7.98E-01	128
PPARG	Obesity	USA	Canonical	Skeletal muscle	$\begin{array}{l} \mbox{Lean controls (BMI < 27 kg/$$$ m^2$) without diabetes } \end{array}$	7	Obese individuals without diabetes	6	Quantitative Northern- blot	1,27	5.12E-01	136
PPARG	Obesity	USA	Canonical	Skeletal muscle	$\begin{array}{l} \mbox{Lean controls (BMI < 27 kg/$$$ m^2$) with no diabetes } \end{array}$	6	Obese inviduals (BMI ${>}30~\text{kg/m}^2)$ with normal glucose tolerance	5	RNase protection assay	2,49	6.04E-05	137
PPARG	Obesity	France	PPARG isoform 1	Subcutaneous fat	Lean non-diabetic individuals	10	Obese non-diabetic individuals	10	Competitive RT-PCR	1,18	4.31E-01	135
PPARG	Obesity	France	PPARG isoform 2	Subcutaneous fat	Lean non-diabetic individuals	10	Obese non-diabetic individuals	10	Competitive RT-PCR	0,75	1.13E-01	135
PPARG	Obesity	France	PPARG isoform 1	Subcutaneous fat	Lean non-diabetic individuals	5	Obese non-diabetic individuals	5	Competitive RT-PCR	1,37	2.95E-01	135
PPARG	Obesity	France	PPARG isoform 2	Subcutaneous fat	Lean non-diabetic individuals	5	Obese non-diabetic individuals	5	Competitive RT-PCR	0,88	6.42E-01	135
PPARG	Obesity	Austia	Canonical	Subcutaneous fat	Lean controls without major illness	19	Obese individuals (BMI $> 30 \mbox{ kg/m}^2)$	50	Competitive RT-PCR	1,01	9.32E-01	128
PPARG	Obesity	USA	PPARG isoform 1	Subcutaneous fat	Lean individuals (BMI < 25 kg/m ²) without diabetes or malignancies	11	Obese or overweight individuals (BMI > 27 kg/m ²) without diabetes or malignancies	11	Competitive RT-PCR	0,30	4.25E-03	138
PPARG	Obesity	USA	PPARG isoform 2	Subcutaneous fat	Lean individuals (BMI < 25 kg/m ²) without diabetes or malignancies	11	Obese or overweight individuals (BMI > 27 kg/m ²) without diabetes or malignancies	11	Competitive RT-PCR	1,55	4.66E-02	138
PPARG	Obesity	USA	PPARG isoform 2	Subcutaneous fat	Lean (BMI ${<}25\text{kg/m}^2)$	14	Morbid obesity	24	Competitive RT-PCR	0,65	2.45E-05	139
PSEN1	Alzheimer's disease	Sweden	Canonical	Brain, frontal cortex	Controls affected or not with non-Alzheimer neurological diseases	9	Individuals with Alzheimer disease with neuropathological changes	14	Competitive RT-PCR	0,99	9.18E-01	140
PSEN1	Alzheimer's disease	Japan	Canonical	Skin fibroblasts	Controls with neurological disease without dementia	10	Individuals with Alzheimer disease according to DSM-IIIR criteria	18	Quantitative Northern- blot	2,25	3.32E-02	141

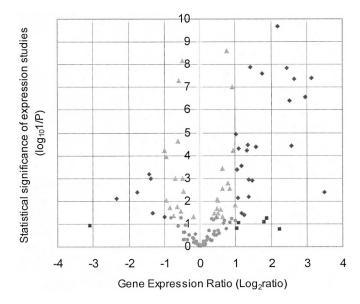
Genetics IN Medicine

Copyright @ American College of Medical Genetics. Unauthorized reproduction of this article is prohibited.

Table 2
(Continued)

Gene	Disease/trait	Country	mRNA isoform	Tissue	Main phenotype of controls	No. of controls	Main phenotype of cases	No. of cases	Method of measure	Ratio	P value	Ref
PSEN1	Alzheimer's disease	Japan	Canonical	Brain, temporal cortex	Controls with neurological disease with no dementia	23	Individuals with Alzheimer disease with neuropathological changes	17	Real-time RT-PCR	1,94	6.09E-05	142
PSEN1	Alzheimer's disease	Sweden	Canonical	Brain, temporal cortex	Controls affected or not with non-Alzheimer neurological diseases	8	Individuals with Alzheimer disease with neuropathological changes	14	RNase protection assay	0,88	4.42E-01	140
SERPINA 8	CAD/MI	Italy	Canonical	Heart, left ventricular wall	Controls with normal coronarography	21	Individuals with stable angina	32	RNase protection assay	0,92	6.70E-01	101
SERPINA 8	CAD/MI	Italy	Canonical	Heart, left ventricular wall	Controls with normal coronarography	21	Individuals with unstable angina	35	In-situ hybridization	1,88	9.70E-08	101
SERPINA 8	Hypertension	Australia	Canonical	Subcutaneous fat	Controls with normal tension and no family history	6	Individuals with isolated systolic hypertension	8	No data	0,12	1.20E-01	143
SLC6A4	Bipolar disorder	USA	Canonical	Brain, frontal cortex	Controls with no psychiatric disorder (no details)	15	Bipolar disorder according to DSM-IV criteria	19	No data	4,57	2,16E-10	144
TNF	Diabetes type 2	Germany	Canonical	Subcutaneous fat	Lean, no diabetes	12	Diabetics type 2 or individuals with impaired glucose tolerance	10	In-situ hybridization	2,36	3.99E-02	145
TNF	Diabetes type 2	Germany	Canonical	Subcutaneous fat	Obese individuals with normal glucose tolerance	18	Diabetic type 2 or individuals with impaired glucose tolerance	10	Quantitative Northern- blot	1,57	8.82E-02	145
TNF	Obesity	USA	Canonical	Subcutaneous fat	Lean controls with no diabetes	6	Obese individuals	9	Quantitative RT-PCR	2,60	1.11E-03	146
TNF	Obesity	Germany	Canonical	Subcutaneous fat	Lean, no diabetes	12	Obese individuals with normal glucose tolerance	18	No data	1,50	2.32E-02	145
TNF	Obesity	USA	Canonical	Subcutaneous fat	Lean controls (BMI \leq 25/kg/ $$\rm m^2)$$	8	Obese or overweight individuals (BMI $>$ 27 kg/m²)	31	No data	1,66	1.59E-01	147
TNF	Obesity	USA	Canonical	Subcutaneous fat	Lean controls (BMI $<$ 25 kg/ $$\rm m^2)$$	9	Obese or overweight individuals (BMI $>$ 25 kg/m²)	41	In-situ hybridization	2,15	4.81E-05	148
TNF	Obesity	Finland	Canonical	Subcutaneous fat	Lean individuals without diabetes	20	Obese or morbid obese individuals (BMI $> 30 \mbox{ kg/m}^2)$ without diabetes	61	No data	1,39	4.80E-02	149
JCP1	Obesity	Austia	Canonical	Omental fat	Lean controls (no details)	14	Obese individuals (no details)	78	Quantitative RT-PCR	0,50	5.83E-05	150
JCP1	Obesity	Austia	Canonical	Subcutaneous fat	Lean controls (no details)	10	Obese individuals (no details)	23	No data	1,22	5.02E-01	150
UCP2	Obesity	Austia	Canonical	Omental fat	Lean controls (BMI $<$ 27 kg/ $$\rm m^2)$$	28	Obese individuals (BMI $>$ 30 kg/m²)	95	No data	0,67	4.92E-08	151
UCP2	Obesity	France	Canonical	Skeletal muscle	Lean controls	6	Obese individuals	5	Competitive RT-PCR	1,24	5.29E-01	152
UCP2	Obesity	France	Canonical	Skeletal muscle	Lean controls	6	Obese individuals	6	Competitive RT-PCR	0,98	9.32E-01	152
UCP2	Obesity	Sweden	Canonical	Skeletal muscle	Lean controls without diabetes	6	Obese individuals free of drug therapy	6	Competitive RT-PCR	0,72	1.04E-03	153
UCP2	Obesity	Spain	Canonical	Skeletal muscle	Lean controls without diabetes	10	Obese individuals (BMI $>$ 30 kg/m ²) with normal glucose tolerance	14	Competitive RT-PCR	0,97	8.49E-01	154
UCP2	Obesity	USA	Canonical	Skeletal muscle	Lean controls (BMI \leq 27 kg/ $$\rm m^2)$$	14	Obese individuals (BMI $>$ 27 kg/m²)	16	No data	0,93	5.63E-01	155
UCP2	Obesity	France	Canonical	Subcutaneous fat	Lean controls	6	Obese individuals	6	No data	1,46	2.52E-01	152
UCP2	Obesity	France	Canonical	Subcutaneous fat	Lean controls	5	Obese individuals	5	Competitive RT-PCR	1,31	2.84E-01	152
UCP2	Obesity	Austia	Canonical	Subcutaneous fat	Lean controls (BMI $<$ 27 kg/ $$\rm m^2)$$	19	Obese individuals (BMI $>$ 30 kg/m²)	82	Competitive RT-PCR	0,92	2.76E-01	151
UCP2	Obesity	USA	Canonical	Subcutaneous fat	Lean controls (BMI $<$ 27 kg/ $$\rm m^2)$$	17	Obese individuals (BMI $> 27~\text{kg/m}^2)$	17	Competitive RT-PCR	0,93	7.13E-01	155
UCP3	Obesity	Austia	UCP3 long isoform	Skeletal muscle	Lean controls, no diabetes	15	Morbid obesity treated by gastric banding, no diabetes	38	Competitive RT-PCR	1,32	3.39E-02	156
UCP3	Obesity	Austia	UCP3 short isoform	Skeletal muscle	Lean controls, no diabetes	15	Morbid obesity treated by gastric banding, no diabetes	38	Competitive RT-PCR	1,31	6.61E-02	156
UCP3	Obesity	France	UCP3 short isoform	Skeletal muscle	Lean controls without diabetes	9	Obese individuals without diabetes	7	In-situ hybridization	0,73	4.62E-01	157
UCP3	Obesity	France	UCP3 long isoform	Skeletal muscle	Lean controls without diabetes	9	Obese individuals without diabetes	7	Competitive RT-PCR	1,10	8.09E-01	157
UCP3	Obesity	Sweden	Canonical	Skeletal muscle	Lean controls without diabetes	6	Obese individuals free of drug therapy	6	RNase protection assay	1,02	8.21E-01	153
UCP3	Obesity	USA	UCP3 long isoform	Skeletal muscle	$\begin{array}{c} \mbox{Lean controls} (BMI < 27 \mbox{ kg/} \\ m^2) \end{array}$	14	Obese individuals (BMI $>$ 27 kg/m²)	16	Competitive RT-PCR	1,15	3.54E-01	155
UCP3	Obesity	USA	UCP3 short isoform	Skeletal muscle	$\begin{array}{c} \mbox{Lean controls} (BMI < 27 \mbox{ kg/} \\ m^2) \end{array}$	14	Obese individuals (BMI $>$ 27 kg/m²)	16	Competitive RT-PCR	1,08	5.95E-01	155
UCP3	Obesity	France	Canonical	Skeletal muscle	Lean controls	5	Obese individuals	5	Competitive RT-PCR	1,42	1.86E-01	152

February 2005 · Vol. 7 · No. 2


91

Copyright @ American College of Medical Genetics. Unauthorized reproduction of this article is prohibited.

Gene	Disease/trait	Country	mRNA isoform	Tissue	Main phenotype of controls	No. of controls	Main phenotype of cases	No. of cases	Method of measure	Ratio	P value	Ref.
UCP3	Obesity	France	Canonical	Skeletal muscle	Lean controls	8	Obese individuals	6	RNase protection assay	0,74	2.29E-01	152
UCP3	Obesity	Spain	Canonical	Skeletal muscle	Lean controls without diabetes	10	Obese individuals (BMI $>$ 30 kg/m ²) with normal glucose tolerance	14	RNase protection assay	1,06	7.75E-01	154
UCP3	Obesity	Austia	UCP3 short isoform	Skeletal muscle	Lean controls, no diabetes	15	Morbid obesity treated by gastric banding, no diabetes	38	RNase protection assay	1,31	6.61E-02	156
UCP3	Obesity	France	UCP3 short isoform	Skeletal muscle	Lean controls without diabetes	9	Obese individuals without diabetes	7	Competitive RT-PCR	0,73	4.62E-01	157
UCP3	Obesity	France	UCP3 long isoform	Skeletal muscle	Lean controls without diabetes	9	Obese individuals without diabetes	7	Competitive RT-PCR	1,10	8.09E-01	157
UCP3	Obesity	Sweden	Canonical	Skeletal muscle	Lean controls without diabetes	6	Obese individuals free of drug therapy	6	In-situ hybridization	1,02	8.21E-01	153
UCP3	Obesity	USA	UCP3 long isoform	Skeletal muscle	$\begin{array}{l} \mbox{Lean controls} (BMI < 27 \mbox{ kg/} \\ \mbox{m}^2) \end{array}$	14	Obese individuals (BMI $> 27~{\rm kg/m^2})$	16	RNase protection assay	1,15	3.54E-01	155
UCP3	Obesity	USA	UCP3 short isoform	Skeletal muscle	Lean controls (BMI \leq 27 kg/ $$\rm m^2)$$	14	Obese individuals $(BMI > 27 \mbox{ kg/m}^2)$	16	RNase protection assay	1,08	5.95E-01	155
UCP3	Obesity	France	Canonical	Skeletal muscle	Lean controls	5	Obese individuals	5	Competitive RT-PCR	1,42	1.86E-01	152

Table 2(Continued)

toward positive results could explain such difference. However, the number published and unpublished nonsignificant studies required to account for these results should be at least 19-fold higher than the number of significant studies, i.e., 1140 studies (95% CI: 851–1428). Because there were only 60 nonsignificant published studies, one must postulate the existence of 1080 unpublished negative studies (95% CI: 791–1368), which appear frankly unrealistic. The ratio of statistically significant gene expression studies was similar between the genes also known to be involved in Mendelian-inherited disorders or not (27 out of 58 vs. 31 out of 62; χ^2 -test, 1 degree of freedom: 0.4; P = 0.46). The ratio of statistically significant gene expression studies was also similar for the gene-disease associations tested by association before expression studies or after (20 out of 33 vs. 40 out of 87; χ^2 -test, 1 degree of freedom: 1.3; P =0.15). Furthermore, out of the 60 studies leading to statistically significant results, 15 were first reports and 45 were replications of previous studies. Thirty-four of these replications reports showed statistically significant difference in expression in agreement with the original report, whereas only 11 showed a statistically significant change in transcript levels but in the opposite direction to that described in the first report. These figures are significantly different from the 22.5 studies expected to occur randomly in the same and opposite direction (95% CI: 19.0–26.0; χ^2 -test, 1 degree of freedom: 11.7; $P = 6 \times 10^{-4}$).

Fig. 2. Volcano-plot of expression ratio against significance of gene expression studies between case and control samples. Each symbol indicates the results of a published genetic expression study. Ratios of mRNA expression for each gene are reported as $\log_2 o$ for quotient of case series to control series. Statistical significance of expression between populations is expressed as the $\log_{10} o$ for the inverse *P* value from the unpaired two-tailed Student's *t*-test. Red squares represent studies with a change of expression over 2-fold ($\log_2 ratio > 1 \text{ or } \log_2 ratio < -1$) that are not statistically significant ($\log_{10} 1/P < 1.3$); brown diamonds correspond to studies with expression change over 2-fold cutoff that are statistically significant; blue triangles indicate studies with changes under 2-fold that are not statistically significant.

	,		1 0 1	0	
Source	Type III Sum of Squares	df	Mean Square	F-statistics	Significance
Gene-disease association	5,42	20	0,27	2,36	0.003
Tissue analyzed	1,70	7	0,24	2,15	0.05
Method for expression analysis	1,68	8	0,21	1,83	0.08
Intercept	5,42	20	0,27	2,36	0.0003
Residual	9,52	83	0,11		
Total	35	120			
Corrected Total	24,79	119			

 Table 3

 Univariate ANOVA analysis for the effect of various parameters on gene expression change

Several sources of bias, related to the heterogeneity of the expression studies presently analyzed, can impact the results of the present meta-analysis. For instance, some susceptibility genes have been tested by allelic association after gene expression analysis, while others were tested before. Although this was not found to impact the results of the present analysis, the frequency of gene expression changes could be overestimated in the subset of genes initially tested for gene expression. Furthermore, the present results could be altered by the fact that some results of gene expression were not independent one from the other, as several samples or genes were analyzed in the same studies. To test this hypothesis, the subset of 27 strictly independent gene expression studies was individually reanalyzed. Positive results were still obtained, as 24 out of the 27 gene expression studies were statistically significant (89%) exceeding the number of 1.35 predicted by chance $(P = 10^{-28},$ binomial distribution). In summary, although the strength of the present statistical analysis supports the validity of the present findings, they should be taken cautiously and require further confirmation.

Actually, the method based on comparing the expression level between series of cases and controls for human susceptibility genes shows a major limitation: only 36 (60.0%) and 19 (31.7%) out of the 60 statistically significant gene expression studies reached 2- or 3-fold changes in expression level, respectively (Fig. 2). In contrast, only 6 (10%) and 3 (5.0%) out of the 60 non–statistically significant studies reach these respective thresholds. Therefore, 2- or 3-fold change expression thresholds have in the present study a sensitivity of 50% and 23.5%, respectively. Consequently, the reliability of testing difference in mRNA abundance can be seriously impacted by the weak differences in transcript abundance between cases and controls.

To test the impact of various methodological parameters on gene expression change, I next performed a univariate ANOVA analysis (Table 3). The gene (P = 0.003) and the nature of tissue analyzed (P = 0.05) were associated with gene expression change between cases and controls, whereas the method of assay to measure transcript abundance had no significant effect (P = 0.08). Multivariate analysis by logistic regression model with a forward stepwise search was performed to assess the relative influence of the univariate factors on gene expression ratio. Both two previous factors were found to be independently associated with gene expression ratio, the gene having a strongest effect (P = 0.002), while the type of tissue used for expression analysis was more weakly associated (P = 0.01). Therefore, because of the influence of the gene itself and the tissue analyzed, the reliability of differential expression analysis is expected to vary strongly from one gene or one tissue to another.

Taken together, the present results demonstrate significant differences in transcript levels between normal and pathologic tissues of human susceptibility genes. These results rationalize the use of comparative gene expression analysis for gene discovery studies. However, differences in transcript amounts appear much lower than those typically found between inbred environmentally controlled animal models.^{6,7} These weak differences should be taken into account for the design of gene susceptibility studies using differences of transcript amounts as a tool^{7–49} for gene^{50–99} discovery/validation.^{100–157}

ACKNOWLEDGMENTS

I thank Jean Frézal (GenAtlas, Paris, Fance) for providing comprehensive details of the genes involved in human Mendelian-inherited disorders, Joel Hirschhorn (Massachusetts Institute of Technology, Boston, MA) for additional information on its meta-analysis, and Laurent Essioux (Hauffman-La-Roche Laboratories, Department of Biostatistics, Basel, Switzerland) for helpful discussions. I also thank three anonymous reviewers for helpful comments on this manuscript.

References

- Segal JA, Barnett JL, Crawford DL. Functional analyses of natural variation in Sp1 binding sites of a TATA-less promoter. J Mol Evol 1999;49:736–749.
- Crawford DL, Segal JA, Barnett JL. Evolutionary analysis of TATA-less proximal promoter function. *Mol Biol Evol* 1999;16:194–207.
- Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. *Proc Natl Acad Sci* USA 2003;100:189–192.
- Stephens JC, Schneider JA, Tanguay DA et al. Haplotype variation and linkage disequilibrium in 313 human genes. *Science* 2001;293:489–493.
- Schadt EE, Monks SA, Drake TA et al. Genetics of gene expression surveyed in maize, mouse and man. *Nature* 2003;422:297–302.
- Korstanje R, Paigen B. From QTL to gene: The harvest begins. Nat Genet 2002;31: 235–236.

- Karp CL, Grupe A, Schadt E et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. *Nat Immunol* 2000;1:221–226.
- Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. *Genet Med* 2002;4:45–61.
- Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. *Nat Genet* 2003;33:177–182.
- Blacker D, Wilcox MA, Laird NM et al. Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 1998;19:357–360.
- Inoue H, Ferrer J, Welling CM et al. Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM in Caucasians. *Diabetes* 1996;45:825–831.
- Cambien F, Poirier O, Lecerf L et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. *Nature* 1992;359:641–644.
- Zee RY, Lou YK, Griffiths LR, Morris BJ. Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. *Biochem Biophys Res Commun* 1992;184:9–15.
- Bonithon-Kopp C, Ducimetiere P, Touboul PJ et al. Plasma angiotensin-converting enzyme activity and carotid wall thickening. *Circulation* 1994;89:952–954.
- Casari G, Barlassina C, Cusi D et al. Association of the alpha-adducin locus with essential hypertension. *Hypertension* 1995;25:320–326.
- Large V, Hellstrom L, Reynisdottir S et al. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest 1997;100:3005–3013.
- Walston J, Silver K, Bogardus C et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. N Engl J Med 1995;333:343–347.
- Bonnardeaux A, Davies E, Jeunemaitre X et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. *Hypertension* 1994;24:63–69.
- Hegele RA, Huang LS, Herbert PN, et al. Apolipoprotein B-gene DNA polymorphisms associated with myocardial infarction. N Engl J Med 1986;315:1509–1515.
- Poduslo SE, Neal M, Herring K, Shelly J. The apolipoprotein CI A allele as a risk factor for Alzheimer's disease. *Neurochem Res* 1998;23:361–367.
- Corder EH, Saunders AM, Strittmatter WJ et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. *Science* 1993;261: 921–923.
- Cumming AM, Robertson FW. Polymorphism at the apoprotein-E locus in relation to risk of coronary disease. *Clin Genet* 1984;25:310–313.
- Couderc R, Mahieux F, Bailleul S, Fenelon G, Mary R, Fermanian J. Prevalence of apolipoprotein E phenotypes in ischemic cerebrovascular disease: A case-control study. *Stroke* 1993;24:661–664.
- Poirier J, Delisle MC, Quirion R et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. *Proc Natl Acad Sci USA* 1995;92:12260–12264.
- Schachter F, Faure-Delanef L, Guenot F et al. Genetic associations with human longevity at the APOE and ACE loci. *Nat Genet* 1994;6:29–32.
- Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. *J Clin Endocrinol Metab* 1997;82:3777– 3782.
- Stanford JL, Just JJ, Gibbs M et al. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. *Cancer Res* 1997;57:1194–1198.
- Lehmann DJ, Johnston C, Smith AD. Synergy between the genes for butyrylcholinesterase K variant and apolipoprotein E4 in late-onset confirmed Alzheimer's disease. *Hum Mol Genet* 1997;6:1933–1936.
- Smith MW, Dean M, Carrington M et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. *Science* 1997;277:959–965.
- Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. *Nat Genet* 1996;14:203–205.
- Gutierrez B, Bertranpetit J, Guillamat R et al. Association analysis of the catechol O-methyltransferase gene and bipolar affective disorder. *Am J Psychiatry* 1997;154: 113–115.
- Li T, Sham PC, Vallada H et al. Preferential transmission of the high activity allele of COMT in schizophrenia. *Psychiatr Genet* 1996;6:131–133.
- Donner H, Rau H, Walfish PG et al. CTLA4 alanine-17 confers genetic susceptibility to Graves' disease and to type 1 diabetes mellitus. J Clin Endocrinol Metab 1997;82:143–146.
- Pullmann R, Jr., Lukac J, Skerenova M et al. Cytotoxic T lymphocyte antigen 4 (CTLA-4) dimorphism in patients with systemic lupus erythematosus. *Clin Exp Rheumatol* 1999;17:725–729.

- Inoue N, Kawashima S, Kanazawa K, Yamada S, Akita H, Yokoyama M. Polymorphism of the NADH/NADPH oxidase p22 phox gene in patients with coronary artery disease. *Circulation* 1998;97:135–137.
- Tamaki S, Iwai N, Tsujita Y, Kinoshita M. Genetic polymorphism of CYP11B2 gene and hypertension in Japanese. *Hypertension* 1999;33:266–270.
- Ambrosone CB, Freudenheim JL, Graham S et al. Cytochrome P4501A1 and glutathione S-transferase (M1) genetic polymorphisms and postmenopausal breast cancer risk. *Cancer Res* 1995;55:3483–34835.
- Armstrong M, Daly AK, Cholerton S, Bateman DN, Idle JR. Mutant debrisoquine hydroxylation genes in Parkinson's disease. *Lancet* 1992;339:1017–1018.
- Uematsu F, Kikuchi H, Motomiya M et al. Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to lung cancer. *Jpn J Cancer Res* 1991;82:254–256.
- Arinami T, Gao M, Hamaguchi H, Toru M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. *Hum Mol Genet* 1997;6:577–582.
- Malhotra AK, Goldman D, Buchanan RW et al. The dopamine D3 receptor (DRD3) Ser9Gly polymorphism and schizophrenia: a haplotype relative risk study and association with clozapine response. *Mol Psychiatry* 1998;3:72–75.
- 42. Kennedy JL, Billett EA, Macciardi FM et al. Association study of dopamine D3 receptor gene and schizophrenia. *Am J Med Genet* 1995;60:558–562.
- LaHoste GJ, Swanson JM, Wigal SB et al. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. *Mol Psychiatry* 1996;1:121–124.
- 44. Kurabayashi T, Tomita M, Matsushita H et al. Association of vitamin D and estrogen receptor gene polymorphism with the effect of hormone replacement therapy on bone mineral density in Japanese women. *Am J Obstet Gynecol* 1999;180:1115– 1120.
- Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3'-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. *Blood* 1996;88: 3698–3703.
- De Stefano V, Chiusolo P, Paciaroni K et al. Prothrombin G20210A mutant genotype is a risk factor for cerebrovascular ischemic disease in young patients. *Blood* 1998;91:3562–3565.
- 47. Bertina RM, Koeleman BP, Koster T et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. *Nature* 1994;369:64–67.
- Dizon-Townson DS, Nelson LM, Easton K, Ward K. The factor V Leiden mutation may predispose women to severe preeclampsia. Am J Obstet Gynecol 1996;175:902– 905.
- Moor E, Silveira A, van't Hooft F et al. Coagulation factor VII mass and activity in young men with myocardial infarction at a young age: Role of plasma lipoproteins and factor VII genotype. *Arterioscler Thromb Vasc Biol* 1995;15:655–664.
- Salmon JE, Millard S, Schachter LA et al. Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 1996;97:1348–1354.
- Hager J, Hansen L, Vaisse C et al. A missense mutation in the glucagon receptor gene is associated with non-insulin-dependent diabetes mellitus. *Nat Genet* 1995; 9:299–304.
- 52. Hattersley AT, Turner RC, Permutt MA et al. Linkage of type 2 diabetes to the glucokinase gene. *Lancet* 1992;339:1307–1310.
- Siffert W, Rosskopf D, Siffert G et al. Association of a human G-protein beta3 subunit variant with hypertension. *Nat Genet* 1998;18:45–48.
- 54. Sperr WR, Huber K, Roden M, et al. Inherited platelet glycoprotein polymorphisms and a risk for coronary heart disease in young central Europeans. *Thromb Res* 1998;90:117–123.
- Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst 1993;85:1159–1164.
- Anttila S, Hirvonen A, Husgafvel-Pursiainen K, Karjalainen A, Nurminen T, Vainio H. Combined effect of CYP1A1 inducibility and GSTM1 polymorphism on histological type of lung cancer. *Carcinogenesis* 1994;15:1133–1135.
- Groop LC, Kankuri M, Schalin-Jantti C, et al. Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus. *N Engl J Med* 1993;328:10–14.
- Hinney A, Ziegler A, Nothen MM, Remschmidt H, Hebebrand J. 5-HT2A receptor gene polymorphisms, anorexia nervosa, and obesity. *Lancet* 1997;350:1324–1325.
- Arranz M, Collier D, Sodhi M et al. Association between clozapine response and allelic variation in 5-HT2A receptor gene. *Lancet* 1995;346:281–282.
- Inayama Y, Yoneda H, Sakai T et al. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia. *Am J Med Genet* 1996;67:103–105.
- 61. Langdahl BL, Lokke E, Carstens M, Stenkjaer LL, Eriksen EF. Osteoporotic fractures are associated with an 86-base pair repeat polymorphism in the interleukin-

Altered gene expression in human susceptibility genes

1–receptor antagonist gene but not with polymorphisms in the interleukin-1beta gene. J Bone Miner Res 2000;15:402–414.

- Zhu S, Chan-Yeung M, Becker AB et al. Polymorphisms of the IL-4, TNF-alpha, and Fcepsilon RIbeta genes and the risk of allergic disorders in at-risk infants. *Am J Respir Crit Care Med* 2000;161:1655–1659.
- Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA. The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N Engl J Med 1997;337:1720–1725.
- Tsukamoto K, Yoshida H, Watanabe S et al. Association of radial bone mineral density with CA repeat polymorphism at the interleukin 6 locus in postmenopausal Japanese women. J Hum Genet 1999;44:148–151.
- Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. *Diabetes* 1984;33:176–183.
- Hitman GA, Jowett NI, Williams LG, Humphries S, Winter RM, Galton DJ. Polymorphisms in the 5'-flanking region of the insulin gene and non-insulin-dependent diabetes. *Clin Sci (Lond)* 1984;66:383–388.
- Imai Y, Fusco A, Suzuki Y et al. Variant sequences of insulin receptor substrate-1 in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1994;79:1655–1658.
- Marian AJ, Brugada R, Kleiman NS. Platelet glycoprotein IIIa PlA polymorphism and myocardial infarction. *N Engl J Med* 1996;335:1071–1072; author reply 1073– 1074.
- Bowen T, Guy CA, Craddock N et al. Further support for an association between a polymorphic CAG repeat in the hKCa3 gene and schizophrenia. *Mol Psychiatry* 1998;3:266–269.
- Li WD, Reed DR, Lee JH et al. Sequence variants in the 5' flanking region of the leptin gene are associated with obesity in women. *Ann Hum Genet* 1999;63:227– 234.
- 71. Thorn JA, Chamberlain JC, Alcolado JC et al. Lipoprotein and hepatic lipase gene variants in coronary atherosclerosis. *Atherosclerosis* 1990;85:55–60.
- Vandevyver C, Raus P, Stinissen P, Philippaerts L, Cassiman JJ, Raus J. Polymorphism of the tumour necrosis factor beta gene in multiple sclerosis and rheumatoid arthritis. *Eur J Immunogenet* 1994;21:377–382.
- Sullivan KE, Wooten C, Goldman D, Petri M. Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. *Arthritis Rheum* 1996;39:2046–2051.
- Boylan KB, Takahashi N, Paty DW et al. DNA length polymorphism 5' to the myelin basic protein gene is associated with multiple sclerosis. *Ann Neurol* 1990; 27:291–297.
- Frosst P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. *Nat Genet* 1995;10: 111–113.
- Arruda VR, von Zuben PM, Chiaparini LC, Annichino-Bizzacchi JM, Costa FF. The mutation Ala677–>Val in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. *Thromb Haemost* 1997;77: 818–821.
- Wang XL, Sim AS, Badenhop RF, McCredie RM, Wilcken DE. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. *Nat Med* 1996;2:41–45.
- Sanghera DK, Aston CE, Saha N, Kamboh MI. DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease. *Am J Hum Genet* 1998;62:36–44.
- Deeb SS, Fajas L, Nemoto M et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. *Nat Genet* 1998;20:284–287.
- Palmer MS, Dryden AJ, Hughes JT, Collinge J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. *Nature* 1991;352:340–342.
- Wragg M, Hutton M, Talbot C. Genetic association between intronic polymorphism in presenilin-1 gene and late-onset Alzheimer's disease. Alzheimer's Disease Collaborative Group. *Lancet* 1996;347:509–512.
- Wang H, Chu WS, Hemphill C, Elbein SC. Human resistin gene: molecular scanning and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians. J Clin Endocrinol Metab 2002;87:2520–2524.
- Kalsheker NA, Hodgson IJ, Watkins GL, White JP, Morrison HM, Stockley RA. Deoxyribonucleic acid (DNA) polymorphism of the alpha 1-antitrypsin gene in chronic lung disease. *BMJ (Clin Res Ed)* 1987;294:1511–1514.
- Morgan K, Morgan L, Carpenter K, et al. Microsatellite polymorphism of the alpha 1-antichymotrypsin gene locus associated with sporadic Alzheimer's disease. *Hum Genet* 1997;99:27–31.
- Ishigami T, Umemura S, Iwamoto T et al. Molecular variant of angiotensinogen gene is associated with coronary atherosclerosis. *Circulation* 1995;91:951–954.
- Jeunemaitre X, Soubrier F, Kotelevtsev YV et al. Molecular basis of human hypertension: role of angiotensinogen. *Cell* 1992;71:169–180.

- Eriksson P, Kallin B, van't Hooft FM, Bavenholm P, Hamsten A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. *Proc Natl Acad Sci USA* 1995;92:1851–1855.
- Li SR, Baroni MG, Oelbaum RS, Stock J, Galton DJ. Association of genetic variant of the glucose transporter with non-insulin-dependent diabetes mellitus. *Lancet* 1988;2:368–370.
- Lesch KP, Gross J, Franzek E, Wolozin BL, Riederer P, Murphy DL. Primary structure of the serotonin transporter in unipolar depression and bipolar disorder. *Biol Psychiatry* 1995;37:215–223.
- Moffatt MF, Cookson WO. Tumour necrosis factor haplotypes and asthma. *Hum Mol Genet* 1997;6:551–554.
- Herrmann SM, Ricard S, Nicaud V et al. Polymorphisms of the tumour necrosis factor-alpha gene, coronary heart disease and obesity. *Eur J Clin Invest* 1998;28:59– 66.
- Hohler T, Kruger A, Schneider PM et al. A TNF-alpha promoter polymorphism is associated with juvenile onset psoriasis and psoriatic arthritis. J Invest Dermatol 1997;109:562–565.
- Ilonen J, Merivuori H, Reijonen H et al. Tumour necrosis factor-beta gene RFLP alleles in Finnish IDDM haplotypes. The Childhood Diabetes in Finland (DiMe) Study Group. Scand J Immunol 1992;36:779–783.
- Heijmans BT, Westendorp RG, Droog S, Kluft C, Knook DL, Slagboom PE. Association of the tumour necrosis factor alpha-308G/A polymorphism with the risk of diabetes in an elderly population-based cohort. *Genes Immun* 2002;3:225–228.
- Storey A, Thomas M, Kalita A et al. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. *Nature* 1998;393:229–234.
- Esterbauer H, Oberkofler H, Liu YM et al. Uncoupling protein-1 mRNA expression in obese human subjects: the role of sequence variations at the uncoupling protein-1 gene locus. *J Lipid Res* 1998;39:834–844.
- Cassell PG, Neverova M, Janmohamed S, et al. An uncoupling protein 2 gene variant is associated with a raised body mass index but not Type II diabetes. *Diabetologia* 1999;42:688–692.
- Cassell PG, Saker PJ, Huxtable SJ et al. Evidence that single nucleotide polymorphism in the uncoupling protein 3 (UCP3) gene influences fat distribution in women of European and Asian origin. *Diabetologia* 2000;43:1558–1564.
- Morrison NA, Qi JC, Tokita A et al. Prediction of bone density from vitamin D receptor alleles. *Nature* 1994;367:284–287.
- Okuizumi K, Onodera O, Namba Y et al. Genetic association of the very low density lipoprotein (VLDL) receptor gene with sporadic Alzheimer's disease. *Nat Genet* 1995;11:207–209.
- Neri Serneri GG, Boddi M, Poggesi L et al. Activation of cardiac renin-angiotensin system in unstable angina. J Am Coll Cardiol 2001;38:49–55.
- Petit-Turcotte C, Stohl SM, Beffert U, et al. Apolipoprotein C-I expression in the brain in Alzheimer's disease. *Neurobiol Dis* 2001;8:953–963.
- Isoe K, Urakami K, Sato K, Takahashi K. Apolipoprotein E in patients with dementia of the Alzheimer type and vascular dementia. *Acta Neurol Scand* 1996;93:133– 137.
- Yamagata K, Urakami K, Ikeda K et al. High expression of apolipoprotein E mRNA in the brains with sporadic Alzheimer's disease. *Dement Geriatr Cogn Disord* 2001; 12:57–62.
- Zarow C, Victoroff J. Increased apolipoprotein E mRNA in the hippocampus in Alzheimer disease and in rats after entorhinal cortex lesioning. *Exp Neurol* 1998; 149:79–86.
- Hernandez I, Sokolov BP. Abnormal expression of serotonin transporter mRNA in the frontal and temporal cortex of schizophrenics. *Mol Psychiatry* 1997;2:57–64.
- Roberts DA, Balderson D, Pickering-Brown SM, Deakin JF, Owen F. The abundance of mRNA for dopamine D2 receptor isoforms in brain tissue from controls and schizophrenics. *Brain Res Mol Brain Res* 1994;25:173–175.
- Tallerico T, Novak G, Liu IS, Ulpian C, Seeman P. Schizophrenia: elevated mRNA for dopamine D2(Longer) receptors in frontal cortex. *Brain Res Mol Brain Res* 2001;87:160–165.
- Ilani T, Ben-Shachar D, Strous RD et al. A peripheral marker for schizophrenia: Increased levels of D3 dopamine receptor mRNA in blood lymphocytes. *Proc Natl Acad Sci U S A* 2001;98:625–628.
- Kwak YT, Koo MS, Choi CH, Sunwoo I. Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. *BMC Med Genet* 2001;2:3.
- 111. Andreelli F, Laville M, Vega N, Riou JP, Vidal H. Regulation of gene expression during severe caloric restriction: lack of induction of p85 alpha phosphatidylinositol 3-kinase mRNA in skeletal muscle of patients with type II (non-insulin-dependent) diabetes mellitus. *Diabetologia* 2000;43:356–363.
- Ducluzeau PH, Perretti N, Laville M et al. Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. *Diabetes* 2001;50:1134–1142.
- 113. Henry RR, Ciaraldi TP, Abrams-Carter L, Mudaliar S, Park KS, Nikoulina SE. Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-

February 2005 \cdot Vol. 7 \cdot No. 2

Copyright @ American College of Medical Genetics. Unauthorized reproduction of this article is prohibited.

insulin-dependent diabetes mellitus subjects. Biochemical and molecular mechanisms. J Clin Invest 1996;98:1231–126.

- 114. Huang X, Vaag A, Hansson M, Weng J, Laurila E, Groop L. Impaired insulinstimulated expression of the glycogen synthase gene in skeletal muscle of type 2 diabetic patients is acquired rather than inherited. *J Clin Endocrinol Metab* 2000; 85:1584–1590.
- Lofman M, Yki-Jarvinen H, Parkkonen M et al. Increased concentrations of glycogen synthase protein in skeletal muscle of patients with NIDDM. *Am J Physiol* 1995;269:E27–E32.
- Vestergaard H, Bjorbaek C, Andersen PH, Bak JF, Pedersen O. Impaired expression of glycogen synthase mRNA in skeletal muscle of NIDDM patients. *Diabetes* 1991; 40:1740–1745.
- 117. Vestergaard H, Lund S, Larsen FS, Bjerrum OJ, Pedersen O. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulinresistant patients with non-insulin-dependent diabetes mellitus. *J Clin Invest* 1993; 91:2342–50.
- Burnet PW, Eastwood SL, Harrison PJ. 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. *Neuropsychophar*macology 1996;15:442–455.
- Hernandez I, Sokolov BP. Abnormalities in 5-HT2A receptor mRNA expression in frontal cortex of chronic elderly schizophrenics with varying histories of neuroleptic treatment. J Neurosci Res 2000;59:218–225.
- Glare EM, Divjak M, Rolland JM, Walters EH. Asthmatic airway biopsy specimens are more likely to express the IL-4 alternative splice variant IL-4delta2. J Allergy Clin Immunol 1999;104:978–982.
- 121. Humbert M, Durham SR, Ying S et al. IL-4 and IL-5 mRNA and protein in bronchial biopsies from patients with atopic and nonatopic asthma: evidence against "intrinsic" asthma being a distinct immunopathologic entity. *Am J Respir Crit Care Med* 1996;154:1497–1504.
- Kotsimbos TC, Ernst P, Hamid QA. Interleukin-13 and interleukin-4 are coexpressed in atopic asthma. Proc Assoc Am Physicians 1996;108:368–373.
- Minshall EM, Hogg JC, Hamid QA. Cytokine mRNA expression in asthma is not restricted to the large airways. J Allergy Clin Immunol 1998;101:386–390.
- Olivenstein R, Taha R, Minshall EM, Hamid QA. IL-4 and IL-5 mRNA expression in induced sputum of asthmatic subjects: comparison with bronchial wash. J Allergy Clin Immunol 1999;103:238–245.
- Robinson DS, Hamid Q, Ying S et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 1992;326:298–304.
- Kotsimbos TC, Ghaffar O, Minshall EM et al. Expression of the IL-4 receptor alpha-subunit is increased in bronchial biopsy specimens from atopic and nonatopic asthmatic subjects. J Allergy Clin Immunol 1998;102:859–866.
- Hamilton BS, Paglia D, Kwan AY, Deitel M. Increased obese mRNA expression in omental fat cells from massively obese humans. *Nat Med* 1995;1:953–956.
- 128. Krempler F, Breban D, Oberkofler H et al. Leptin, peroxisome proliferator-activated receptor-gamma, and CCAAT/enhancer binding protein-alpha mRNA expression in adipose tissue of humans and their relation to cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2000;20:443–449.
- Montague CT, Prins JB, Sanders L, Digby JE, O'Rahilly S. Depot- and sex-specific differences in human leptin mRNA expression: implications for the control of regional fat distribution. *Diabetes* 1997;46:342–7.
- Considine RV, Considine EL, Williams CJ et al. Evidence against either a premature stop codon or the absence of obese gene mRNA in human obesity. *J Clin Invest* 1995;95:2986–2988.
- Considine RV, Sinha MK, Heiman ML et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292–295.
- Lonnqvist F, Arner P, Nordfors L, Schalling M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. *Nat Med* 1995;1:950–953.
- Vidal H, Auboeuf D, De Vos P et al. The expression of ob gene is not acutely regulated by insulin and fasting in human abdominal subcutaneous adipose tissue. *J Clin Invest* 1996;98:251–255.
- Xu M, Zhong G, Fu Z et al. Molecular cloning, sequencing and expression of obese gene in the Chinese. *Chin Med J (Engl)* 2000;113:350–353.
- 135. Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. *Diabetes* 1997;46:1319–27.

- Kruszynska YT, Mukherjee R, Jow L, Dana S, Paterniti JR, Olefsky JM. Skeletal muscle peroxisome proliferator- activated receptor-gamma expression in obesity and non- insulin-dependent diabetes mellitus. J Clin Invest 1998;101:543–548.
- Park KS, Ciaraldi TP, Abrams-Carter L, Mudaliar S, Nikoulina SE, Henry RR. PPAR-gamma gene expression is elevated in skeletal muscle of obese and type II diabetic subjects. *Diabetes* 1997;46:1230–1234.
- Sewter C, Blows F, Considine R, Vidal-Puig A, O'Rahilly S. Differential effects of adiposity on peroxisomal proliferator-activated receptor gamma1 and gamma2 messenger ribonucleic acid expression in human adipocytes. J Clin Endocrinol Metab 2002;87:4203–4207.
- Vidal-Puig AJ, Considine RV, Jimenez-Linan M et al. Peroxisome proliferatoractivated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997;99:2416–2422.
- Johnston JA, Froelich S, Lannfelt L, Cowburn RF. Quantification of presenilin-1 mRNA in Alzheimer's disease brains. *FEBS Lett* 1996;394:279–284.
- 141. Ikeda K, Urakami K, Isoe K, Ohno K, Nakashima K. The expression of presenilin-1 mRNA in skin fibroblasts from Alzheimer's disease. *Dement Geriatr Cogn Disord* 1998;9:145–148.
- Ikeda K, Urakami K, Arai H et al. The expression of presenilin 1 mRNA in skin fibroblasts and brains from sporadic Alzheimer's disease. *Dement Geriatr Cogn Disord* 2000;11:245–250.
- Davis D, Liyou N, Lockwood D, Johnson A. Angiotensinogen genotype, plasma protein and mRNA concentration in isolated systolic hypertension. *Clin Genet* 2002;61:363–368.
- 144. Sun Y, Zhang L, Johnston NL, Torrey EF, Yolken RH. Serial analysis of gene expression in the frontal cortex of patients with bipolar disorder. *Br J Psychiatry Suppl* 2001;41:s137–s141.
- 145. Hube F, Birgel M, Lee YM, Hauner H. Expression pattern of tumour necrosis factor receptors in subcutaneous and omental human adipose tissue: role of obesity and non-insulin-dependent diabetes mellitus. *Eur J Clin Invest* 1999;29:672–678.
- Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995;95:2409–2415.
- 147. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue: Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995;95:2111–2119.
- Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. *Am J Physiol Endocrinol Metab* 2001;280:E745–E751.
- 149. Koistinen HA, Bastard JP, Dusserre E, et al. Subcutaneous adipose tissue expression of tumour necrosis factor-alpha is not associated with whole body insulin resistance in obese nondiabetic or in type-2 diabetic subjects. *Eur J Clin Invest* 2000;30:302–310.
- Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. *J Lipid Res* 1997;38:2125–2133.
- Oberkofler H, Liu YM, Esterbauer H, Hell E, Krempler F, Patsch W. Uncoupling protein-2 gene: reduced mRNA expression in intraperitoneal adipose tissue of obese humans. *Diabetologia* 1998;41:940–946.
- Millet L, Vidal H, Andreelli F et al. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest 1997;100:2665– 2670.
- Nordfors L, Hoffstedt J, Nyberg B et al. Reduced gene expression of UCP2 but not UCP3 in skeletal muscle of human obese subjects. *Diabetologia* 1998;41:935–939.
- 154. Sbraccia P, D'Adamo M, Leonetti F, et al. Relationship between plasma free fatty acids and uncoupling protein-3 gene expression in skeletal muscle of obese subjects: in vitro evidence of a causal link. *Clin Endocrinol (Oxf)* 2002;57:199–207.
- 155. Vidal-Puig A, Rosenbaum M, Considine RC, Leibel RL, Dohm GL, Lowell BB. Effects of obesity and stable weight reduction on UCP2 and UCP3 gene expression in humans. *Obes Res* 1999;7:133–140.
- Esterbauer H, Oberkofler H, Dallinger G et al. Uncoupling protein-3 gene expression: reduced skeletal muscle mRNA in obese humans during pronounced weight loss. *Diabetologia* 1999;42:302–309.
- Millet L, Vidal H, Larrouy D, Andreelli F, Laville M, Langin D. mRNA expression of the long and short forms of uncoupling protein-3 in obese and lean humans. *Diabetologia* 1998;41:829–832.

Genetics IN Medicine

Jais