Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptome analysis of ankylosing spondylitis patients before and after TNF-α inhibitor therapy reveals the pathways affected

Abstract

Tumor necrosis factor-α (TNF-α) inhibitors are highly effective in suppressing inflammation in ankylosing spondylitis (AS) patients, and operate by suppression of TFN-α and downstream immunological pathways. To determine the mechanisms of action of TNF-α inhibitors in AS patients, we used transcriptomic and bioinformatic approaches on peripheral blood mononuclear cells from AS patients pre and post treatment. We found 656 differentially expressed genes, including the genome-wide significant AS-associated genes, IL6R, NOTCH1, IL10, CXCR2 and TNFRSF1A. A distinctive gene expression profile was found between male and female patients, mainly because of sex chromosome-linked genes and interleukin 17 receptor C, potentially accounting for the differences in clinical manifestation and treatment response between the genders. In addition to immune and inflammation regulatory pathways, like intestinal immune network for IgA production, cytokine–cytokine receptor interaction, Ras signaling pathway, allograft rejection and hematopoietic cell lineage, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that infection-associated pathways (influenza A and toxoplasmosis) and metabolism-associated pathways were involved in response to TNF-α inhibitor treatment, providing insight into the mechanism of TNF-α inhibitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ward MM, Reveille JD, Learch TJ, Davis JC Jr, Weisman MH . Impact of ankylosing spondylitis on work and family life: comparisons with the US population. Arthritis Rheum 2008; 59: 497–503.

    Article  Google Scholar 

  2. Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 2013; 45: 730–738.

    Article  CAS  Google Scholar 

  3. Nurullah Akkoc MD, Khan MA . Overestimation of the prevalence of ankylosing spondylitis in the Berlin study: comment on the article by Braun et al. Arthritis Rheum 2005; 52: 4049–4050.

    Article  Google Scholar 

  4. Ng SC, Liao Z, Yu DT, Chan ES, Zhao L, Gu J . Epidemiology of spondyloarthritis in the People's Republic of China: review of the literature and commentary. Semin Arthritis Rheum 2007; 37: 39–47.

    Article  Google Scholar 

  5. Hukuda S, Minami M, Saito T, Mitsui H, Matsui N, Komatsubara Y et al. Spondyloarthropathies in Japan: nationwide questionnaire survey performed by the Japan Ankylosing Spondylitis Society. J Rheumatol 2001; 28: 554–559.

    CAS  PubMed  Google Scholar 

  6. Brown MA, Jepson A, Young A, Whittle HC, Greenwood BM, Wordsworth BP . Ankylosing spondylitis in West Africans—evidence for a non-HLA-B27 protective effect. Ann Rheum Dis 1997; 56: 68–70.

    Article  CAS  Google Scholar 

  7. Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016; 48: 510–518.

    Article  CAS  Google Scholar 

  8. Reveille JD . Major histocompatibility genes and ankylosing spondylitis. Best Pract Res Clin Rheumatol 2006; 20: 601–609.

    Article  CAS  Google Scholar 

  9. Brown MA, Kenna T, Wordsworth BP . Genetics of ankylosing spondylitis-insights into pathogenesis. Nat Rev Rheumatol 2015; 12: 81–91.

    Article  Google Scholar 

  10. Pimentel-Santos FM, Ligeiro D, Matos M, Mourão AF, Costa J, Santos H et al. Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther 2011; 13: 1–8.

    Article  Google Scholar 

  11. Chen K, Wei XZ, Zhu XD, Bai YS, Chen Y, Wang CF et al. Whole-blood gene expression profiling in ankylosing spondylitis identifies novel candidate genes that may contribute to the inflammatory and tissue-destructive disease aspects. Cell Immunol 2013; 286: 59–64.

    Article  CAS  Google Scholar 

  12. Zhu ZQ, Tang JS, Cao XJ . Transcriptome network analysis reveals potential candidate genes for ankylosing spondylitis. Eur Rev Med Pharmacol Sci 2013; 17: 3178–3185.

    PubMed  Google Scholar 

  13. Appel H, Loddenkemper C, Miossec P . Rheumatoid arthritis and ankylosing spondylitis - pathology of acute inflammation. Clin Exp Rheumatol 2009; 27 (4 Suppl 55): 1216–1218.

    Google Scholar 

  14. Heijde DVD, Sieper J, Maksymowych WP, Dougados M, Burgosvargas R, Landewé R et al. 2010 Update of the international ASAS recommendations for the use of anti-TNF agents in patients with axial spondyloarthritis. Ann Rheum Dis 2011; 70: 905–908.

    Article  Google Scholar 

  15. Callhoff J . Efficacy of TNFα blockers in patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis: a meta-analysis. Ann Rheum Dis 2014; 74: 1241–1248.

    Article  Google Scholar 

  16. Anderson JJ, Baron G, Desiree VDH, Felson DT, Dougados M . Ankylosing spondylitis assessment group preliminary definition of short-term improvement in ankylosing spondylitis. Arthritis Rheum 2001; 44: 279.1–279.

    Article  Google Scholar 

  17. Baraliakos X, Heldmann F, van den Bosch F, Burmester G, Gaston H, van der Horst-Bruinsma IE et al. Long-term efficiency of infliximab in patients with ankylosing spondylitis: real life data confirm the potential for dose reduction. RMD Open 2016; 2: e000272.

    Article  CAS  Google Scholar 

  18. Wolf D, Skup M, Yang H, Fang AP, Kageleiry A, Chao J et al. Clinical outcomes associated with switching or discontinuation from anti-TNF inhibitors for nonmedical reasons. Clin Ther 2017; 39: 849–862 e6.

    Article  CAS  Google Scholar 

  19. Stone MA, Payne U, Pacheco-Tena C, Inman RD . Cytokine correlates of clinical response patterns to infliximab treatment of ankylosing spondylitis. Ann Rheum Dis 2004; 63: 84–87.

    Article  CAS  Google Scholar 

  20. Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T . Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 2010; 49: 1215–1228.

    Article  CAS  Google Scholar 

  21. Giannopoulou EG . Use of RNA sequencing to evaluate rheumatic disease patients. Arthritis Res Ther 2015; 17: 167.

    Article  Google Scholar 

  22. Duan R, Leo P, Bradbury L, Brown MA, Thomas G . Gene expression profiling reveals a downregulation in immune-associated genes in patients with AS. Ann Rheum Dis 2010; 69: 1724–1729.

    Article  CAS  Google Scholar 

  23. Gu J, Wei YL, Wei JC, Huang F, Jan MS, Centola M et al. Identification of RGS1 as a candidate biomarker for undifferentiated spondylarthritis by genome-wide expression profiling and real-time polymerase chain reaction. Arthritis Rheum 2009; 60: 3269–3279.

    Article  CAS  Google Scholar 

  24. Sharma SM, Choi D, Planck SR, Harrington CA, Austin CR, Lewis JA et al. Insights in to the pathogenesis of axial spondyloarthropathy based on gene expression profiles. Arthritis Res Ther 2009; 11: R168.

    Article  Google Scholar 

  25. Assassi S, Reveille JD, Arnett FC, Weisman MH, Ward MM, Agarwal SK et al. Whole-blood gene expression profiling in ankylosing spondylitis shows upregulation of toll-like receptor 4 and 5. J Rheumatol 2011; 38: 87–98.

    Article  CAS  Google Scholar 

  26. Pimentel-Santos FM, Ligeiro D, Matos M, Mourao AF, Costa J, Santos H et al. Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther 2011; 13: R57.

    Article  Google Scholar 

  27. Xu L, Sun Q, Jiang S, Li J, He C, Xu W . Changes in gene expression profiles of the hip joint ligament of patients with ankylosing spondylitis revealed by DNA chip. Clin Rheumatol 2012; 31: 1479–1491.

    Article  Google Scholar 

  28. Thomas GP, Duan R, Pettit AR, Weedon H, Kaur S, Smith M et al. Expression profiling in spondyloarthropathy synovial biopsies highlights changes in expression of inflammatory genes in conjunction with tissue remodelling genes. BMC Musculoskelet Disord 2013; 14: 354.

    Article  Google Scholar 

  29. Lamot L, Borovecki F, Tambic Bukovac L, Vidovic M, Perica M, Gotovac K et al. Aberrant expression of shared master-key genes contributes to the immunopathogenesis in patients with juvenile spondyloarthritis. PLoS ONE 2014; 9: e115416.

    Article  Google Scholar 

  30. Haynes KR Regulatory RNAs underlying genetic associations in ankylosing spondylitis. PhD Thesis, University of Queensland, Australia 2015.

  31. Singh JA, Furst DE, Bharat A, Curtis JR, Kavanaugh AF, Kremer JM et al. 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken) 2012; 64: 625–639.

    Article  CAS  Google Scholar 

  32. El-Sayed NM, Ismail KA, Badawy AF, Elhasanein KF . In vivo effect of anti-TNF agent (etanercept) in reactivation of latent toxoplasmosis. J Parasit Dis 2016; 40: 1459–1465.

    Article  Google Scholar 

  33. Goedecke V, Crane AM, Jaakkola E, Kaluza W, Laiho K, Weeks DE et al. Interleukin 10 polymorphisms in ankylosing spondylitis. Genes Immun 2003; 4: 74–76.

    Article  CAS  Google Scholar 

  34. Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 2011; 43: 761–767.

    Article  CAS  Google Scholar 

  35. Noordenbos T, Yeremenko N, Gofita I, van de Sande M, Tak PP, Caňete JD et al. Interleukin‐17–positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum 2012; 64: 99–109.

    Article  CAS  Google Scholar 

  36. Miossec P, Korn T, Kuchroo VK . Interleukin-17 and type 17 helper T cells. N Engl J Med 2009; 361: 888–898.

    Article  CAS  Google Scholar 

  37. van der Linden S, Valkenburg HA, Cats A . Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 1984; 27: 361–368.

    Article  CAS  Google Scholar 

  38. Garrett S, Jenkinson T, Kennedy LG, Whitelock H, Gaisford P, Calin A . A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol 1994; 21: 2286–2291.

    CAS  Google Scholar 

  39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29: 15–21.

    Article  CAS  Google Scholar 

  40. Love MI, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.

    Article  Google Scholar 

  41. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013; 41: D808–D815.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the participating patients for taking part in this study. The study was supported by grants from the Science and Technology Project of Wenzhou (No. Y20160028). MAB is funded by a National Health and Medical Research Council Senior Principal Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Brown.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ellis, J., Pennisi, D. et al. Transcriptome analysis of ankylosing spondylitis patients before and after TNF-α inhibitor therapy reveals the pathways affected. Genes Immun 18, 184–190 (2017). https://doi.org/10.1038/gene.2017.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2017.19

This article is cited by

Search

Quick links