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Gene signatures associated with adaptive humoral immunity
following seasonal influenza A/H1N1 vaccination
IG Ovsyannikova1, HM Salk1, RB Kennedy1, IH Haralambieva1, MT Zimmermann2, DE Grill2, AL Oberg2 and GA Poland1

This study aimed to identify gene expression markers shared between both influenza hemagglutination inhibition (HAI) and virus-
neutralization antibody (VNA) responses. We enrolled 158 older subjects who received the 2010–2011 trivalent inactivated
influenza vaccine. Influenza-specific HAI and VNA titers and mRNA-sequencing were performed using blood samples obtained at
Days 0, 3 and 28 post vaccination. For antibody response at Day 28 versus Day 0, several gene sets were identified as significant in
predictive models for HAI (n= 7) and VNA (n= 35) responses. Five gene sets (comprising the genes MAZ, TTF, GSTM, RABGGTA, SMS,
CA, IFNG and DOPEY) were in common for both HAI and VNA. For response at Day 28 versus Day 3, many gene sets were identified
in predictive models for HAI (n= 13) and VNA (n= 41). Ten gene sets (comprising biologically related genes, such as MAN1B1, POLL,
CEBPG, FOXP3, IL12A, TLR3, TLR7 and others) were shared between HAI and VNA. These identified gene sets demonstrated a high
degree of network interactions and likelihood for functional relationships. Influenza-specific HAI and VNA responses demonstrated
a remarkable degree of similarity. Although unique gene set signatures were identified for each humoral outcome, several gene
sets were determined to be in common with both HAI and VNA response to influenza vaccine.
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INTRODUCTION
Each year, seasonal influenza infection places a substantial
burden on society, both medically and socioeconomically.1 In the
2014–2015 season alone, nearly 18 000 hospitalizations and
5.0–9.3% of all deaths were directly attributed to influenza
infection and related complications, including pneumonia in the
United States.2 Meanwhile, additional research suggests that
medical expenses and loss of productivity associated with
influenza infection place a financial burden of over $80 billion
on the US economy annually.1 Yearly influenza vaccination is
currently the most effective method available to reduce this
morbidity and mortality.
Currently, the hemagglutination inhibition (HAI) assay is the

most widely accepted measure to assess the protection provided
by influenza vaccine. An HAI titer of 1:40 is commonly accepted as
a correlate of protection associated with ~ 50% protection against
subsequent influenza virus challenge.3–6 However, owing to the
inability of HAI titers to completely predict susceptibility to future
infection, it is clear that HAI antibodies (Abs) provide only a partial
explanation of the immunity induced by influenza vaccination. For
instance, a recent study noted the ability of patients with little or
no HAI Abs to resist influenza infection, suggesting that non-HAI
neutralizing activity, such as broader virus neutralization Abs
(VNA), may contribute to protection.7 Interestingly, HAI and VNA
titers are often observed to be correlated, although the literature
in this area is limited.8 Another report suggests that VNA titers are
a better correlate of protection against influenza infection than
HAI titers after immunization with live-attenuated influenza
vaccine.9 Thus, it is important to consider both HAI and VNA
titers when determining correlates of protection after influenza
immunization.

In order to further explore this issue, it is critical to understand
the genomic mechanisms underlying HAI and VNA responses
to influenza vaccination. Currently, few biological or genetic
markers10–13 have been identified that characterize the adaptive
immune response to influenza vaccine or predict vaccine failure,
and additional research in this area is needed. In this study we
used a systems biology approach to explore and identify such
potential markers. Our aim for this study was to identify genomic
markers (both individual genes and gene sets) in common
between both influenza A/H1N1-specific HAI and VNA responses
following seasonal trivalent inactivated influenza vaccine (TIV) in
older adults. Application of a systems biology approach will
advance our knowledge by identifying novel mechanisms and
generating hypotheses for variations in adaptive immune
responses to vaccines.

RESULTS
Subject demographics
In total, 159 subjects participated in this study14 and the median
(interquartile range) age of the cohort was 59.5 (55.3, 66.3) years.
Female participants represented 61.6% of the cohort, whereas
males represented 38.4%. Overall, a majority of the cohort self-
identified as Caucasian (98.7%); the remaining 1.3% reported a
race of ‘Other.’ One subject’s sample failed mRNA-sequencing
quality control; therefore, data from158 subjects were carried
forward for analyses.

Ab responses to influenza A/H1N1 in study subjects
Influenza A/H1N1-specific Ab responses were measured in pre-
vaccination serum samples (Day 0) and at Days 3 and 28 post
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vaccination. Day 0 influenza-specific median HAI and VNA titers
(median 1:80; interquartile range 1:40–1:320) demonstrated the
presence of pre-existing Abs in all subjects. Both HAI and VNA
titers increased by Day 28 (1:320; interquartile range 1:160–1:640,
Po0.001 for both outcomes). As expected, we found a strong
positive linear relationship between HAI titer and VNA titer for
Days 0 (r= 0.924, P= 7.07 × 10− 67), 3 (r= 0.934, P= 1.65 × 10− 71)
and 28 (r= 0.940, P= 8.62 × 10− 75), which suggests that Ab
responses measured by the HAI and VNA assays are similar
(Figure 1). The intra-class correlation coefficient was 0.91 for the
HAI assay (Day 0) and 0.83 for the VNA assay (Day 0). There were
no significant differences in HAI (P= 0.22, P= 0.17 and P= 0.79, for
Days 0, 3 and 28, respectively) or VNA (P= 0.37, P= 0.31 and
P= 0.41, for Days 0, 3 and 28, respectively) titers between male
and female subjects at any timepoint (Figure 2a). Figure 2b
illustrates that there were no significant differences at any time
point in HAI (P= 0.56, P= 0.44 and P= 0.15, for Days 0, 3 and 28,
respectively) or VNA (P= 0.86, P= 0.51 and P= 0.32, for Days 0, 3
and 28, respectively) responses.

Common gene sets (Log2 Day 28 vs Day 0) associated with HAI
and VNA responses
Externally defined gene sets with significant mRNA expression
changes from Day 0 to Day 28 (Po0.005) were used in cross-
validated penalized regression models, to predict HAI or VNA
change from Day 0 to Day 28 (adaptive immune response). We
identified 7 and 35 gene sets containing genes with changes in
expression that demonstrated as association with variability in the
response and had at least one gene entering the model for the
HAI and VNA responses, respectively. In contrast, no gene sets
entered the models to predict early HAI or VNA change from Day 0
to Day 3. The genes associated with HAI are RNA transcription
factors (TTF2 and MAZ), chemokine/cytokine/receptor (CCR9,
IL10RA and IFNG), transferase activity markers (GSTM1, 2, SMS

and RABGGTA), carbonic-anhydrases (CA2, 6, 8, 11 and 14),
oxidoreductases (NDUFS3, CYB5R2, 3, CYB561, NQO1 and 2) and
the endosome transport dopey family marker (DOPEY2)
(Supplementary Table 1). Among gene sets associated with VNA
response are tumor necrosis factor ligand TNFSF11, cytokines/
receptors (IFNG, IL7 and IL27), interferon (IFN)-inducible transcrip-
tion factors (IRF7 and IRF9) and other genes with unknown role in
the regulation of humoral immunity (Supplementary Table 2). Five
gene sets were in common with both HAI and VNA (Table 1).
These genes/gene sets were involved in cellular protein processes
(MAZ and TTF2), transferase (GSTM1, GSTM2, RABGGTA and SMS)
and carbonate dehydratase (CA2, CA6, CA8, CA11 and CA14)
activities, KEGG pathway (IFNG) and endosome transport
(DOPEY2).

Common gene sets (Log2 Day 28 vs Day 3) associated with HAI
and VNA responses
Using the approach detailed above for gene sets having
statistically significant changes between Days 3 (innate immune
response) and 28 post influenza immunization, we identified 13
gene sets associated with HAI titers. In addition, 41 gene sets were
associated with variation in VNA response to vaccine. Genes in the
HAI regression model include endoplasmic reticulum-associated
enzyme (MAN1B1), DNA polymerase (POLL) and many other genes
with unknown immune function (Supplementary Table 3). Genes
in the VNA regression model include signal transducers (STAT1
and STAT3), tyrosine kinase (TYK2), Golgi vesicular transport
protein (GOSR1) and others. For additional genes and gene sets,
see Supplementary Table 4. Overall, 10 gene sets and related
genes were associated with both HAI and VNA responses.
Included are immune-related genes MAN1B1, POLL, CEBPG, FOXP3,
IL12A, TLR3 and TLR7 (Table 2).

Biologic functions implicated by genes associating with HAI and
VNA responses
Network interactions among all genes within significant gene sets
were extracted, revealing a number of highly interconnected
modules. Our statistically prioritized genes were typically repre-
sentatives from these modules (Supplementary Figure S2). Within
this network, we calculated the extent of interconnectivity
between genes prioritized by our statistical approach (Figure 3)
and identified 51% as directly connected to at least one other
prioritized gene. Randomly selected gene sets (see Methods)
exhibited a mean interconnectivity of 29 ± 4%, indicating a
significant level of interrelationships among our prioritized genes;
none of the randomly generated sets of genes showed this extent
of interconnectivity. Focusing on statistically prioritized genes,
many of those associated with both HAI and VNA (including INFG
and TLR genes) were found to have known interactions with genes
that were uniquely associated with HAI or VNA. Further, a high
degree of network interactions were identified between the gene
sets prioritized at different time points, indicating a high likelihood
for functional relationships between the genes. Thus, the distinct
genes/gene sets prioritized for each outcome and time point tend
to directly interact with one another, indicating probable
participation in common biologic mechanisms.
To add further annotation-based evidence for functional

relationships between these genes, we performed Gene Ontology
(GO) term enrichment. The most significantly enriched VNA-
specific terms were purine salvage and metabolism. The most
significantly enriched terms shared by both outcomes are the
biosynthetic processes ‘long chain fatty-acyl-CoA,’ ‘positive
regulation of IFNG,’ and ‘triglyceride.’ Although many of the
statistically enriched terms matched prior expectation (for
example, IFNG regulation),10 some present more novel hypotheses
for future study. See Supplementary Figure S1 for the full list of
significantly enriched GO terms, by outcome and time point.

Figure 1. Comparison of HAI and VNA responses (Day 28 vs Day 0)
(n= 158 subjects). Heatmap of the overlap between the log2 fold
change of HAI (rows) and VNA (columns) for Day 28 relative to Day 0.
The color scheme is determined by the percent of the total subjects
in each cell with white indicating no overlap, pink indicating a small
percentage of overlap and blue indicating the largest overlap. The
majority of the results either fall on the diagonal or off-diagonal,
indicating strong concordance in these assays.
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Figure 2. Distribution of HAI and VNA responses (Day 0, Day 3 and Day 28) by sex and age group. (a) Scatterplot of HAI and VNA titers by male
(M) and female (F) at Day 0, Day 3 and Day 28. (b) Scatterplot of HAI and VNA titers by age: 50–64 years old and 65 years and older.

Table 1. Common gene sets with genes entering regression models

Gene set64 HAI VNA Coefficienta Median log2
fold change

MSEb Genes MSEb Genes

CPCD: (CELLULAR_PROTEIN_COMPLEX_DISASSEMBLY) 2.245 MAZ 2.290 MAZ − − 0.005
SUPT16H − 0.026

TTF2 TTF2 − − 0.009
UPF1 + 0.037

ALKYL: (TRANSFERASE_ACTIVITY_TRANSFERRING_ALKYL_OR_
ARYLOTHER_THAN_METHYLGROUPS)

2.279 GSTM1 2.334 GSTM1 − − 0.029

GSTM2 GSTM2 − − 0.039
MAT2A + 0.070

RABGGTA RABGGTA + 0.004
SMS SMS − − 0.005

CDA: (CARBONATE_DEHYDRATASE_ACTIVITY) 2.286 CA11 2.346 CA11 + − 0.080
CA14 CA14 − − 0.101
CA2 CA2 − − 0.038
CA6 CA6 − − 0.100
CA8 CA8 − 0.197

RA: (KEGG_REGULATION_OF_AUTOPHAGY) 2.290 IFNG 2.403 IFNG + 0.113
ET: (ENDOSOME_TRANSPORT) 2.330 DOPEY2 2.357 DOPEY2 + 0.023

Abbreviations: HAI, hemagglutination inhibition; MSE, mean squared error; VNA, virus-neutralization antibody. Common gene sets with genes entering
regression models for HAI and VNA responses with the log2 Day 28 versus Day 0 fold-change in gene expression as the explanatory variables. aA positive (+)
coefficient from the regression models indicates that as the log2 fold change for the gene increases from Day 0 to Day 28, then the estimated response
increases (upregulated with respect to the change). If the coefficient is negative (− ) as the log2 fold change for the gene increases, the estimate response
decreases. bCross-validated MSE. Gene sets presented had genes remain in the penalized regression models for both HAI and VNA. The gene set name
provides the abbreviation that is used for simplicity in the text, a brief description and gene set name from the MSigDB64 and the actual gene.
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DISCUSSION
The goal of this study was to identify genomic markers in common
with both HAI and VNA responses following influenza A/H1N1
vaccination. Although the magnitude of HAI and VNA titers to
influenza vaccine are often correlated, as they are in this study
(Figure 1), the two measures of humoral immunity are different;
therefore, it was expected that gene expression models would
vary somewhat between the two immune outcomes. Thus, we
chose to identify common gene sets/genes based on similarities in
HAI and VNA responses.

Through our modeling, we identified five gene sets containing
genes with expression changes from Day 0 to Day 28 that
demonstrated association with both HAI and VNA titers (Table 1).
Similarly, we identified 10 gene sets containing genes with
expression pattern changes from Day 3 to Day 28 (Table 2) that
were associated with variation in both HAI and VNA responses.
One of the gene sets associated with both HAI and VNA for Day 28
versus Day 0 expression was CPCD. Genes of particular interest
within this gene set include MAZ, a transcription factor, which was
prioritized in both models, and TTF2, which is a transcription

Table 2. Common gene sets with genes entering regression models

Gene set64 HAI VNA Coefficienta Median log2
Fold- Change

MSEb Genes MSEb Genes

ERCC: (REACTOME_N_GLYCAN_TRIMMING_IN_THE_ER_AND_
CALNEXIN_CALRETICULIN_CYCLE)

2.222 MAN1B1 2.333 MAN1B1 − −0.022

NHEJ: (KEGG_NON_HOMOLOGOUS_END_JOINING) 2.288 POLL 2.374 POLL − − 0.026
IFNG: (INTERFERON_GAMMA_PRODUCTION) 2.302 CEBPG 2.419 CEBPG − − 0.022

EBI3 − 0.004
FOXP3 FOXP3 − − 0.041
IL12A IL12A + − 0.026
INHBA INHBA + 0.005
TLR3 TLR3 + 0.151
TLR7 TLR7 + 0.058
TLR9 + 0.147

BER: (KEGG_BASE_EXCISION_REPAIR) 2.302 2.313 LIG3 + 0.047
NEIL1 + − 0.016

PARP2 PARP2 − − 0.001
POLL POLL − − 0.026

SMUG1 + 0.015
FAB: (REACTOME_FATTY_ACYL_COA_BIOSYNTHESIS) 2.306 ACSL1 2.381 ACSL1 + 0.063

ACSL5 ACSL5 + 0.020
ELOVL7 + − 0.012

FASN FASN + 0.013
HSD17B12 − 0.034
SLC25A1 SLC25A1 + 0.009

SRA: (SECRETIN_LIKE_RECEPTOR_ACTIVITY) 2.309 BAI1 2.398 BAI1 + − 0.029
TAPT1 TAPT1 − − 0.057

KREB: (BIOCARTA_KREB_PATHWAY) 2.310 2.360 ACO2 + 0.017
CS CS − − 0.002

FH − 0.016
IDH2 − 0.002

OGDH OGDH − 0.055
SDHA + 0.036

SUCLA2 SUCLA2 + 0.043
PNS: (PERIPHERAL_NERVOUS_SYSTEM_DEVELOPMENT) 2.318 BAI1 2.422 BAI1 + − 0.029

GSTM3 GSTM3 − − 0.067
MCC: (MEIOTIC_CELL_CYCLE) 2.325 LIG3 2.363 LIG3 + 0.047

RAD51B + − 0.032
RAD54B RAD54B − − 0.060
REC8 REC8 + − 0.018
STAG3 STAG3 − − 0.013
TUBG1 TUBG1 − 0.030

LM: (LEARNING_AND_OR_MEMORY) 2.326 ACSL4 2.354 ACSL4 + 0.015
CRHBP CRHBP + − 0.025
DLG4 DLG4 − − 0.011

FYN − 0.024
GALR2 GALR2 − 0.059

NF1 + 0.069
S100B S100B − 0.030

VLDLR − 0.071

Abbreviations: HAI, hemagglutination inhibition; MSE, mean squared error; VNA, virus-neutralization antibody. Common gene sets with genes
entering regression models for HAI and VNA Responses, with the log2 Day 28 vs Day 3 fold-change in gene expression as the explanatory variables.
aA positive (+) coefficient from the regression models indicates that as the log2 fold change for the gene increases from Day 3 to Day 28, then the
estimated response increases (upregulated with respect to the change). If the coefficient is negative ( − ) as the log2 fold change for the gene increases,
the estimate response decreases. bCross-validated MSE. Gene sets presented had genes remain in the penalized regression models for both HAI and VNA.
The gene set name provides the abbreviation that is used for simplicity in the text, a brief description and gene set name from the MSigDB64 and the
actual gene.
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termination factor for RNA polymerase II.15 Often referred to as
Pur1, MAZ encodes for a protein that regulates inflammation-
induced expression of serum amyloid A proteins.16,17 Data suggest
that serum amyloid A is involved in at least two aspects of
immune regulation. Serum amyloid A proteins are released from
hepatocytes during acute inflammation where they typically
collaborate with high-density lipoprotein.18 This newly formed
complex prompts the synthesis of several cytokines and acts as a
chemotactic agent for both neutrophils and mast cells. In addition,
serum amyloid A is capable of binding to, and activating, TLR4 on
B lymphocytes to initiate maturation.18,19

We also identified the RA gene set, with significant change
between Day 28 versus Day 0. This gene set includes the immune
gene IFNG. Studies have shown that IFNγ is capable of inhibiting
proliferation of pre-activated B lymphocytes or stimulating
activated B-lymphocyte proliferation and isotype switching.20

Thus, MAZ or IFNG gene expression signature may contribute to
differential influenza-specific Ab expression post immunization.
On analysis of changes in gene expression between Day 28

versus Day 3 post influenza vaccination, we identified 10 gene sets
associated with both HAI and VNA titers (Table 2). There was one
gene in the ERCC gene set (MAN1B1) that entered the regression
model. MAN1B1 encodes the enzyme endoplasmic reticulum
mannosyl-oligosaccharide 1,2-α-mannosidase (ER mannosidase I,
Mnl1). MAN1B1 is commonly referenced in disorders of lysosomal
storage21 due to the enzyme’s role in cleaving mannose
monomers from newly synthesized peptides within the ER. As
Mnl1 is an essential component of quality control for proper
protein folding, secretion and function,22,23 polymorphisms in
MAN1B1 could potentially result in an alteration of the protein
profile of immune response to TIV antigens. Recent studies using
kifunensine (Mnl1 inhibitor) suggest that Mnl1 affects immune
regulation by preventing naive CD4+ T-cell activation,24 leading to
a lack of B-cell co-stimulation and Ab production. Although this

phenomenon has been more widely studied for MAN1A1-encoded
Mnl1, the observed actions could potentially be generalized to
MAN1B1-encoded Mnl1.
When evaluating the change in early-activation gene expression

from Day 3 and Day 28 as predictors in the model, the NHEJ gene
set had genes enter the regression model for both HAI and VNA.
Within this gene set is the POLL gene, which codes for DNA
polymerase λ, an enzyme with a critical role in both DNA
replication and repair.25 Previous studies suggest that polymerase
λ is involved in DNA base excision repair in the wake of oxidative
damage.26,27 One study shows that polymerase λ-deficient mice
experience a decreased rate of germinal center B-cell receptor
somatic hypermutation.27 This observed decline in somatic
hypermutation is thought to be caused by a reduction in the
prevalence of B cells due to their inability to successfully repair
oxidative DNA damage. It can be proposed that mutations in the
POLL gene may affect the ability of germinal center B cells to
diversify Ab populations, thereby altering the humoral immune
response to influenza.
The immune-associated gene set IFNG also had genes that

entered the model for both HAI and VNA when the change in
gene expression for Day 28 versus Day 3 was evaluated. Genes of
interest in this gene set are FOXP3, INHBA, TLR3 and TLR7; others
include CEBPG, EBI3, IL12A and TLR9. However, TLR9 entered
models only for the HAI and not for the VNA response.
Studies have shown that FOXP3 serves as the master regulator

of T-regulatory cell (Treg) production. Tregs, which are critical for
dampening the immune response, have also been shown to
secrete cytokines, such as IFNγ, which have important immunor-
egulatory functions.28 IFNγ is essential for the induction of FOXP3
in CD4+ T cells.29,30 Less research has been conducted on the
influence of Tregs on humoral immunity; however, recent studies
suggest that Tregs also inhibit B-cell responses to antigens
through IFNγ-related mechanisms. It has been suggested that

Figure 3. Statistically prioritized genes exhibit a high degree of network interactions. (a) Comparing with randomly selected gene sets, our
prioritized genes have a significant level of direct interactions. (b) Visualizing the full network of all genes within prioritized gene sets reveals
the presence of network modules (Supplementary Figure S2). (c) The network interactions between our statistically prioritized genes
demonstrate significant interactions across time points and outcomes. Edges are bundled to increase legibility.
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alterations in the ratio of Tregs to T-follicular helper cells within
germinal centers exert control over Ab responses.31

Of further importance in the IFNG gene set is INHBA. This gene
encodes the peptide inhibin βA, a subunit of both activin and
inhibin; these proteins operate antagonistically within the immune
system.32 Activin A is produced by activated B cells before it
directly stimulates naive B cells to increase production of IgG and
indirectly stimulates activated B cells to increase IgG and IgE
secretion.33

The Toll-like receptor (TLR) genes, TLR3 and TLR7, also entered
the models for both the HAI and VNA response to influenza
antigen models when using Day 28 versus Day 3 post vaccination
expression. TLRs are well known for their involvement in the
innate immune response; however, it has been shown that B cells
also express TLRs that, when bound to ligand, enhance cell
survival and provoke increased Ab production.34 Other genes in
this gene set include CEBPG, a B-cell transcription factor;35 EBI3, a
gene encoding a subunit of both interleukin (IL)-27 and IL-35;36

and IL12A, a gene encoding a subunit of the Treg inducer IL-35.37

We have demonstrated that the genes prioritized by our statistical
methods are involved in diverse cellular functions that are important
biologically. Our statistical approach filters out genes with highly
correlated expression (that is, members of protein complexes or
proteins mediating similar biologic functions). Thus, the somewhat
diverse set of genes prioritized by our methods are likely to be
representatives of broader classes of genes or of specific protein
complexes (see Supplementary Figure S2).
To interpret the coordinated activity of prioritized genes, we

used two types of prior information: network resources and
GO term enrichment. These two types of resources provide
complementary information: evidence of physical or molecular
interactions and participation in the same molecular or biochem-
ical processes, respectively. It is noteworthy that statistically
significant GO term enrichment in this context is a descriptive
measure about the gene’s functions: the genes were prioritized by
our statistical approach and we use term enrichment as a means
to describe what biologic activities to which they contribute.
Through mapping all of the genes identified by our statistical
approach onto biologic networks and inspecting the degree of
known relationships among them, we find that many share direct
interactions. The set of common genes, those prioritized by
models of both HAI and VNA, have many direct connections with
genes that were prioritized by one outcome, indicating participa-
tion in similar functions. This is also true across time points. In
order to further identify the functions shared by these genes, we
performed GO term enrichment for the entire set and also for
each subset (by time point and outcome). Some functions are
identified across the individual outcome comparisons, but some
are only identified when considering genes across our outcome-
associated results. Specifically, multiple lipid metabolism terms
including phosphatidylinositol signaling (including PIP3), lipid
(cholesterol, triglyceride and phosphatidylinositol) metabolism
and lipid transport are implicated by genes across our compar-
isons. This broad network-based summary highlights the multi-
faceted nature of immune response.
Our study design used rigorous randomization approaches in

order to minimize the influence of experimental artifacts. Our data
reduction steps were agnostic to the outcome being modeled and
used externally available immune system knowledge. All modeling
involving the outcome was cross-validated to ensure reproduci-
bility. The novelty of this study is evident in that it is the first of its
kind to identify gene sets and genes whose changes in expression
influence variation in both HAI and VNA responses to influenza
A/H1N1 immunization. However, there are limitations to this
study. First, the utilization of a larger cohort would enhance
statistical power. The examination of gene expression underlying
the innate immune response would be beneficial to this study; in
order to do this, sample collection on Day 1 post immunization

would have been ideal. Lastly, the scope of this study is limited to
A/H1N1 influenza and may or may not be generalizable to other
components of the TIV.
The unique data and results generated from this study could

potentially be used to predict humoral response to influenza vaccine
in the future and inform the development of an individualized
vaccine schedule paradigm.38–40 The identification of gene signa-
tures associated with humoral immunity may provide a better
understanding of the genetic markers of immune response and may
assist with the design of better vaccines and adjuvants.

MATERIALS AND METHODS
Study subjects
The methodology used for the selection and recruitment of study subjects
has been previously reported elsewhere.14,41–43 Briefly, the study included
159 healthy adults, ranging in age from 50 to 74 years old, who were
immunized with an intramascular single dose (0.5 ml) of the 2010–2011
seasonal TIV Fluarix (GlaxoSmithKline, Research Triangle Park, NC, USA),
containing A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2) and B/
Brisbane/60/2008 viral strains.14,41–43 TIV is prepared from split-virion
influenza viruses propagated in embryonated chicken eggs and contains
a ratio of 15 μg of the hemagglutinin antigen for each of the three
influenza strains.44

Before the onset of the study, each participant provided written,
informed consent. All subjects reported stable health and provided
detailed vaccination histories. Subjects were excluded from the study if
they already received the 2010–2011 TIV. Exclusion criteria included the
display of flu-like signs or symptoms at any point throughout the duration
of the study. Subjects were also excluded from enrollment if they were
diagnosed with influenza, or exhibited symptoms consistent with
influenza, at any time from the beginning of the influenza season in
Minnesota (as defined by the first reported cases over the period of the
individual subject’s participation).45 In addition, one participant was
excluded due to cDNA library preparation malfunction. Blood samples
(90 ml) from each subject were obtained at three separate time points: pre-
vaccination (Day 0) and Days 3 (innate immune response) and 28 (adaptive
immune response) post vaccination.14 This study was approved by the
Mayo Clinic Institutional Review Board.

HAI and VNA assays
We have previously described the HAI and VNA assays.14,41,43 As published
elsewhere,46–48 the standard WHO protocol49 was used to determine
influenza H1N1-specific (virus strain A/California/07/2009) Ab titers from
each subject’s serum at all three time points. The HAI titer was defined as
the highest dilution of serum that inhibits red blood cell (0.5%)
hemagglutination. The VNA titer was defined as the reciprocal of the
highest dilution of serum that neutralizes 200 plaque-forming units of
influenza A/H1N1 virus.
Seroconversion to influenza vaccine antigens was defined as a fourfold

increase in serum Ab titers between Day 0 (before vaccination) and Day 28,
or as an increase in serum Ab titers from o10 to ⩾ 40 from Day 0 to Day
28.50 The average coefficients of variation for the assays performed in this
study were 2.9 and 4.7% for HAI and VNA, respectively.

Separation of PBMCs
Methodology used for peripheral blood mononuclear cell (PBMC)
preparation is identical to what we have previously published.42 PBMCs
were isolated from blood samples (100 ml) from each subject at each
timepoint pre- and post-vaccination using cell preparation tubes with
sodium citrate (CPT; BD Biosciences, San Jose, CA, USA), as previously
published.42 Purified PBMCs were resuspended at a concentration of
1 × 107 per ml in RPMI-1640 medium containing L-glutamine (Invitrogen;
Thermo Fisher Scientific, Carlsbad, CA, USA), supplemented with 10%
dimethyl sulfoxide and 20% fetal calf serum (Hyclone; GE Healthcare Life
Sciences, Logan, UT, USA). Cells were frozen overnight at − 80 °C in
freezing containers (Thermo Fisher Scientific) to reach an optimal rate of
cooling and then transferred for storage to liquid nitrogen.

mRNA sequencing
To carry out mRNA next-generation sequencing, we used protocols
identical to those used and published for our transcriptomic studies.51,52
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To summarize, the RNeasy Plus mini Kit and the RNAprotect reagent from
Qiagen (Valencia, CA, USA) were used to extract total RNA from 1×106

PBMCs. Manufacturer protocols were used to create full-length cDNA
libraries using the mRNA-Seq 8 Sample Prep Kit by Illumina (San Diego, CA,
USA). The DNA 1000 Nano Chip kits were run on an Agilent 2100
Bioanalyzer (Agilent, Palo Alto, CA, USA) for library validation and
quantification, and cDNA libraries (5–7 pM) were loaded onto individual
flow cell lanes. The Illumin HiSeq 2000 (Illumina), in addition to Illumina’s
Single Read Cluster Generation kit (v2) and 50 Cycle Illumina Sequencing
Kit (v3), was used to perform single-end read sequencing and the
sequencing reads were aligned to the human genome build 37.1 using
TopHat (1.3.3, Baltimore, MD, USA) and Bowtie (0.12.7, Baltimore, MD, USA).
Gene counting was performed using HTSeq (0.5.3p3, EMBL Heidelberg,
Germany) and the reads mapping to individual exons were counted using
BEDTools (2.7.1, Salt Lake City, UT, USA).53–55

Statistical methods
Demographic results are presented as a percent of the total sample for
discrete variables or as the median and interquartile range for continuous
variables. Spearman’s correlation was used to calculate associations
between Ab titers. The Wilcoxon rank-sum test was used to test for
difference in HAI and VNA titers between male and female subjects, and
between subjects who were 50–64 years of age and those who were 65
years and older.
Conditional quantile normalization, which adjusts for gene length and

GC content, was used to calculate a normalization offset for use in
subsequent analyses of the counts from the mRNA-sequencing data.56

Moderated dispersion estimates were estimated using edgeR, assuming
variance was a nonlinear function of the mean, with the tagwise dispersion
calculated from the trended dispersion.57,58 To identify genes that changed
significantly over time, we used generalized linear models, assuming the
negative binomial distribution with generalized estimating equations, in
order to account for correlation between multiple observations within a
subject to obtain per gene P-values.59–62 Self-contained gene set tests
were performed using the gamma method with soft truncation threshold
of 0.15, an extension of Fisher’s method of combining per-gene P-values.63

The gene sets tested were externally defined gene sets from the Molecular
Signatures Database64,65 that were in the Biocarta, GO, KEGG, Reactome,
Sigma-Aldrich, Signaling Gateway Signal Transduction KE pathways or had
‘virus,’ ‘infect,’ ‘pathogen,’ or ‘innate’ as a keyword in the gene set
description.
Penalized regression methods were used to build regression models

with the goal of understanding the biological processes that may explain
variation in vaccine response.66 Two response variables were evaluated:
(1) log2 fold change of the Day 28 HAI titer relative to the Day 0 HAI titer;
and (2) log2 fold change for Day 28 VNA titer relative to Day 0 VNA titer.
Predictor variables were the individual genes from gene sets having
statistically significant changes over time (Po0.005, n=339). Specifically,
gene sets with significant changes in Day 28 versus Day 0 and Day 28
versus Day 3 were used in the models (log2 difference in normalized
expression between time points). Models were fit to genes from one gene
set at a time. The predictor variables were first filtered using redundancy
analysis,67 with an R2o0.75 as the cutoff. The remaining genes were
included as independent variables in the ‘glmnet’ function in R, which
was used for model selection.68 Gender was also included as a covariate
in the models. Tenfold cross validation was used to select the
lambda parameter (based on the minimum cross-validated mean squared
error), governing the selection of genes to be incorporated in the final
model. The tuning parameter α was set to 0.9, reflective of the elastic
net penalty (a combination of the L1 LASSO and L2 ridge penalties).
The R statistical software version 3.0.2 was used for all analyses
(www.r-project.org).
Genes prioritized by the above statistical models were used in network

analysis. In order to be comprehensive and also focus on high-confidence
interaction data, multiple network resources were combined including
HPRD,69 CCSB,70 the Pathway Interaction Database71 and the subset (7.8%)
of STRING,72 where all interactions had a confidence score of at least 70%.
We evaluated the significance level of network connections using random
sampling. To do this, we generated a network interconnectivity metric
defined as the fraction of genes that are first neighbors of each other,
using all statistically significant genes that map to the network (n=166).
We then randomly selected 10 000 sets of the same size from the network,
limited to genes that were detected by RNA-Seq in our study (n= 15,708).
Network operations were performed using the igraph R package, version

0.7.1. Networks were visualized using Cytoscape73 version 3.2.1 and layouts
refined using AllegroLayout v.2.2.1.74 The biologic functions of gene sets
were evaluated using GO term enrichment.75,76 GO terms were extracted
from the human GO Annotation database77 and hypergeometric tests
were used to determine enrichment. We reported FDR-corrected P-values
(q-values) for terms significant at the qo0.01 level.
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