Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis

Abstract

Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon production downstream of Toll-like receptor (TLR)3. In the present study, we used whole-exome sequencing to investigate the genetic profile of 16 adult patients with a history of HSE. We identified novel mutations in IRF3, TYK2 and MAVS, molecules involved in generating innate antiviral immune responses, which have not previously been associated with HSE. Moreover, data revealed mutations in TLR3, TRIF, TBK1 and STAT1 known to be associated with HSE in children but not previously described in adults. All discovered mutations were heterozygous missense mutations, the majority of which were associated with significantly decreased antiviral responses to HSV-1 infection and/or the TLR3 agonist poly(I:C) in patient peripheral blood mononuclear cells compared with controls. Altogether, this study demonstrates novel mutations in the TLR3 signaling pathway in molecules previously identified in children, suggesting that impaired innate immunity to HSV-1 may also increase susceptibility to HSE in adults. Importantly, the identification of mutations in innate signaling molecules not directly involved in TLR3 signaling suggests the existence of innate immunodeficiencies predisposing to HSE beyond the TLR3 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Griffin DE . Encephalitis, myelitis, and neuritis In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice in Infectious Diseases. Elsevier: Philadelphia, 2005 pp: 1143–1150.

    Google Scholar 

  2. Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 2007; 317: 1522–1527.

    Article  CAS  Google Scholar 

  3. Roizman B, Knipe DM, Whitley RJ . Herpes simplex viruses. In: Knipe DM, Howley PM (eds). Fields Virology. Lippincott Williams & Wilkins: Philadelphia, 2007 pp: 2501–2602.

    Google Scholar 

  4. Paludan SR, Bowie AG, Horan KA, Fitzgerald KA . Recognition of herpesviruses by the innate immune system. Nat Rev Immunol 2011; 11: 143–154.

    Article  CAS  Google Scholar 

  5. Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL . CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 2000; 191: 1459–1466.

    Article  CAS  Google Scholar 

  6. Biron CA, Byron KS, Sullivan JL . Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 1989; 320: 1731–1735.

    Article  CAS  Google Scholar 

  7. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 2004; 101: 1315–1320.

    Article  CAS  Google Scholar 

  8. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A . Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003; 198: 513–520.

    Article  CAS  Google Scholar 

  9. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M . Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 2004; 103: 1433–1437.

    Article  CAS  Google Scholar 

  10. Rasmussen SB, Sorensen LN, Malmgaard L, Ank N, Baines JD, Chen ZJ et al. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems. J Virol 2007; 81: 13315–13324.

    Article  CAS  Google Scholar 

  11. Sorensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR . TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol 2008; 181: 8604–8612.

    Article  CAS  Google Scholar 

  12. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 2010; 11: 997–1004.

    Article  CAS  Google Scholar 

  13. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ . Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 2013; 341: 1390–1394.

    Article  CAS  Google Scholar 

  14. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR . Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 2006; 80: 5059–5064.

    Article  CAS  Google Scholar 

  15. Chiu YH, Macmillan JB, Chen ZJ . RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 2009; 138: 576–591.

    Article  CAS  Google Scholar 

  16. Melchjorsen J, Rintahaka J, Soby S, Horan KA, Poltajainen A, Ostergaard L et al. Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J Virol 2010; 84: 11350–11358.

    Article  CAS  Google Scholar 

  17. Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 2006; 314: 308–312.

    Article  CAS  Google Scholar 

  18. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL . UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 2008; 452: 234–238.

    Article  CAS  Google Scholar 

  19. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 2011; 208: 2083–2098.

    Article  CAS  Google Scholar 

  20. Sancho-Shimizu V, Perez de DR, Lorenzo L, Halwani R, Alangari A, Israelsson E et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 2011; 121: 4889–4902.

    Article  CAS  Google Scholar 

  21. Perez de DR, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 2010; 33: 400–411.

    Article  Google Scholar 

  22. Herman M, Ciancanelli M, Ou YH, Lorenzo L, Klaudel-Dreszler M, Pauwels E et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med 2012; 209: 1567–1582.

    Article  CAS  Google Scholar 

  23. Audry M, Ciancanelli M, Yang K, Cobat A, Chang HH, Sancho-Shimizu V et al. NEMO is a key component of NF-kappaB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. J Allergy Clin Immunol 2011; 128: 610–617.

    Article  CAS  Google Scholar 

  24. Casanova JL, Abel L . Primary immunodeficiencies: a field in its infancy. Science 2007; 317: 617–619.

    Article  CAS  Google Scholar 

  25. Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE et al. Inherited autosomal dominant IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med 2015; 212: 1371–1379.

    Article  CAS  Google Scholar 

  26. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347: aaa2630.

    Article  Google Scholar 

  27. Velazquez L, Fellous M, Stark GR, Pellegrini S . A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992; 70: 313–322.

    Article  CAS  Google Scholar 

  28. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006; 25: 745–755.

    Article  CAS  Google Scholar 

  29. Kilic SS, Hacimustafaoglu M, Boisson-Dupuis S, Kreins AY, Grant AV, Abel L et al. A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome. J Pediatr 2012; 160: 1055–1057.

    Article  Google Scholar 

  30. Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramirez-Alejo N, Kilic SS et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med 2015; 212: 1641–1662.

    Article  CAS  Google Scholar 

  31. Mogensen TH . Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22: 240–273.

    Article  CAS  Google Scholar 

  32. Kumar H, Kawai T, Kato H, Sato S, Takahashi K, Coban C et al. Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med 2006; 203: 1795–1803.

    Article  CAS  Google Scholar 

  33. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB . VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 2005; 19: 727–740.

    Article  CAS  Google Scholar 

  34. Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 2012; 491: 769–773.

    Article  CAS  Google Scholar 

  35. Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD . Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med 2014; 211: 2137–2149.

    Article  CAS  Google Scholar 

  36. Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 2003; 33: 388–391.

    Article  CAS  Google Scholar 

  37. Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol 2013; 131: 1611–1623.

    Article  CAS  Google Scholar 

  38. van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen C et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 2011; 365: 54–61.

    Article  CAS  Google Scholar 

  39. Carty M, Reinert L, Paludan SR, Bowie AG . Innate antiviral signalling in the central nervous system. Trends Immunol 2014; 35: 79–87.

    Article  CAS  Google Scholar 

  40. Abel L, Plancoulaine S, Jouanguy E, Zhang SY, Mahfoufi N, Nicolas N et al. Age-dependent Mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood. J Pediatr 2010; 157: 623–629, 629.e1.

    Article  Google Scholar 

  41. Lim HK, Seppanen M, Hautala T, Ciancanelli MJ, Itan Y, Lafaille FG et al. TLR3 deficiency in herpes simplex encephalitis: High allelic heterogeneity and recurrence risk. Neurology 2014; 83: 1888–1897.

    Article  CAS  Google Scholar 

  42. Yordy B, Iwasaki A . Cell type-dependent requirement of autophagy in HSV-1 antiviral defense. Autophagy 2013; 9: 236–238.

    Article  CAS  Google Scholar 

  43. Piirila H, Valiaho J, Vihinen M . Immunodeficiency mutation databases (IDbases). Hum Mutat 2006; 27: 1200–1208.

    Article  CAS  Google Scholar 

  44. Kanehisa M, Goto S . KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27–30.

    Article  CAS  Google Scholar 

  45. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M . Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014; 42: D199–D205.

    Article  CAS  Google Scholar 

  46. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J . A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46: 310–315.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NM was supported by a grant from the Lundbeck Foundation (# R144-2013-13436). EKO, LØ and THM received financial support from RegionMidt related to ICID. THM and SRP were funded by a grant from the Danish Research Council (# 11-107588, 12-124330). In addition, the work was supported by Kong Christian IX, Aase og Ejnar Danielsens Fond, Dronning Louises Jubilæumslegat and The Foundation for the Advancement of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T H Mogensen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mørk, N., Kofod-Olsen, E., Sørensen, K. et al. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun 16, 552–566 (2015). https://doi.org/10.1038/gene.2015.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.46

This article is cited by

Search

Quick links