Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional analyses of polymorphic variants of human terminal deoxynucleotidyl transferase

Subjects

Abstract

Human terminal deoxynucleotidyl transferase (hTdT) is a DNA polymerase that functions to generate diversity in the adaptive immune system. Here, we focus on the function of naturally occurring single-nucleotide polymorphisms (SNPs) of hTdT to evaluate their role in genetic-generated immune variation. The data demonstrate that the genetic variations generated by the hTdT SNPs will vary the human immune repertoire and thus its responses. Human TdT catalyzes template-independent addition of nucleotides (N-additions) during coding joint formation in V(D)J recombination. Its activity is crucial to the diversity of the antigen receptors of B and T lymphocytes. We used in vitro polymerase assays and in vivo human cell V(D)J recombination assays to evaluate the activity and the N-addition levels of six natural (SNP) variants of hTdT. In vitro, the variants differed from wild-type hTdT in polymerization ability with four having significantly lower activity. In vivo, the presence of TdT varied both the efficiency of recombination and N-addition, with two variants generating coding joints with significantly fewer N-additions. Although likely heterozygous, individuals possessing these genetic changes may have less diverse B- and T-cell receptors that would particularly effect individuals prone to adaptive immune disorders, including autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014; 506: 376–381.

    Article  CAS  PubMed  Google Scholar 

  2. Mabert K, Cojoc M, Peitzsch C, Kurth I, Souchelnytskyi S, Dubrovska A . Cancer biomarker discovery: current status and future perspectives. Int J Radiat Biol 2014; 90: 659–677.

    Article  PubMed  CAS  Google Scholar 

  3. Danchin E, Vitiello V, Vienne A, Richard O, Gouret P, McDermott MF et al. The major histocompatibility complex origin. Immunol Rev 2004; 198: 216–232.

    Article  CAS  PubMed  Google Scholar 

  4. Trowsdale J, Knight JC . Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 2013; 14: 301–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gozalbo-Lopez B, Andrade P, Terrados G, de Andres B, Serrano N, Cortegano I et al. A role for DNA polymerase mu in the emerging DJH rearrangements of the postgastrulation mouse embryo. Mol Cell Biol 2009; 29: 1266–1275.

    Article  CAS  PubMed  Google Scholar 

  6. Lewis SM, Wu GE . The origins of V(D)J recombination. Cell 1997; 88: 159–162.

    Article  CAS  PubMed  Google Scholar 

  7. Lewis SM . The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 1994; 56: 27–150.

    Article  CAS  PubMed  Google Scholar 

  8. Repasky JA, Corbett E, Boboila C, Schatz DG . Mutational analysis of terminal deoxynucleotidyltransferase-mediated N-nucleotide addition in V(D)J recombination. J Immunol 2004; 172: 5478–5488.

    Article  CAS  PubMed  Google Scholar 

  9. Gellert M . V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 2002; 71: 101–132.

    Article  CAS  PubMed  Google Scholar 

  10. Schatz DG, Spanopoulou E . Biochemistry of V(D)J recombination. Curr Top Microbiol Immunol 2005; 290: 49–85.

    CAS  PubMed  Google Scholar 

  11. Lewis SM, Wu GE . The old and the restless. J Exp Med 2000; 191: 1631–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swanson PC . A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol Cell Biol 2002; 22: 7790–7801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grundy GJ, Ramon-Maiques S, Dimitriadis EK, Kotova S, Biertumpfel C, Heymann JB et al. Initial stages of V(D)J recombination: the organization of RAG1/2 and RSS DNA in the postcleavage complex. Mol Cell 2009; 35: 217–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fowler JD, Suo Z . Biochemical, structural, and physiological characterization of terminal deoxynucleotidyl transferase. Chem Rev 2006; 106: 2092–2110.

    Article  CAS  PubMed  Google Scholar 

  15. Komori T, Okada A, Stewart V, Alt FW . Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 1993; 261: 1171–1175.

    Article  CAS  PubMed  Google Scholar 

  16. Gilfillan S, Dierich A, Lemeur M, Benoist C, Mathis D . Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 1993; 261: 1175–1178.

    Article  CAS  PubMed  Google Scholar 

  17. Boubakour-Azzouz I, Bertrand P, Claes A, Lopez BS, Rougeon F . Terminal deoxynucleotidyl transferase requires KU80 and XRCC4 to promote N-addition at non-V(D)J chromosomal breaks in non-lymphoid cells. Nucleic Acids Res 2012; 40: 8381–8391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benedict CL, Gilfillan S, Thai TH, Kearney JF . Terminal deoxynucleotidyl transferase and repertoire development. Immunol Rev 2000; 175: 150–157.

    Article  CAS  PubMed  Google Scholar 

  19. Motea EA, Berdis AJ . Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochimica et Biophysica Acta 2010; 1804: 1151–1166.

    Article  CAS  PubMed  Google Scholar 

  20. Delarue M, Boule JB, Lescar J, Expert-Bezancon N, Jourdan N, Sukumar N et al. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. EMBO J 2002; 21: 427–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fetter M, Zee DS, Koenig E, Dichgans J . Head-shaking nystagmus during vestibular compensation in humans and rhesus monkeys. Acta Oto-laryngologica 1990; 110: 175–181.

    Article  CAS  PubMed  Google Scholar 

  22. Gouge J, Rosario S, Romain F, Beguin P, Delarue M . Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. J Mol Biol 2013; 425: 4334–4352.

    Article  CAS  PubMed  Google Scholar 

  23. Yamtich J, Sweasy JB . DNA polymerase family X: function, structure, and cellular roles. Biochimica et Biophysica acta 2010; 1804: 1136–1150.

    Article  CAS  PubMed  Google Scholar 

  24. Thai TH, Purugganan MM, Roth DB, Kearney JF . Distinct and opposite diversifying activities of terminal transferase splice variants. Nat Immunol 2002; 3: 457–462.

    Article  CAS  PubMed  Google Scholar 

  25. Thai TH, Kearney JF . Isoforms of terminal deoxynucleotidyltransferase: developmental aspects and function. Adv Immunol 2005; 86: 113–136.

    Article  CAS  PubMed  Google Scholar 

  26. Thai TH, Kearney JF . Distinct and opposite activities of human terminal deoxynucleotidyltransferase splice variants. J Immunol 2004; 173: 4009–4019.

    Article  CAS  PubMed  Google Scholar 

  27. Di Santo R, Maga G . Human terminal deoxynucleotidyl transferases as novel targets for anticancer chemotherapy. Curr Med Chem 2006; 13: 2353–2368.

    Article  CAS  PubMed  Google Scholar 

  28. Locatelli GA, Di Santo R, Crespan E, Costi R, Roux A, Hubscher U et al. Diketo hexenoic acid derivatives are novel selective non-nucleoside inhibitors of mammalian terminal deoxynucleotidyl transferases, with potent cytotoxic effect against leukemic cells. Mol Pharmacol 2005; 68: 538–550.

    Article  CAS  PubMed  Google Scholar 

  29. Kodama EN, McCaffrey RP, Yusa K, Mitsuya H . Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem Pharmacol 2000; 59: 273–281.

    Article  CAS  PubMed  Google Scholar 

  30. Conde C, Weller S, Gilfillan S, Marcellin L, Martin T, Pasquali JL . Terminal deoxynucleotidyl transferase deficiency reduces the incidence of autoimmune nephritis in (New Zealand Black x New Zealand White)F1 mice. J Immunol 1998; 161: 7023–7030.

    CAS  PubMed  Google Scholar 

  31. Feeney AJ, Lawson BR, Kono DH, Theofilopoulos AN . Terminal deoxynucleotidyl transferase deficiency decreases autoimmune disease in MRL-Fas(lpr) mice. J Immunol 2001; 167: 3486–3493.

    Article  CAS  PubMed  Google Scholar 

  32. Marshall AJ, Doyen N, Bentolila LA, Paige CJ, Wu GE . Terminal deoxynucleotidyl transferase expression during neonatal life alters D(H) reading frame usage and Ig-receptor-dependent selection of V regions. J Immunol 1998; 161: 6657–6663.

    CAS  PubMed  Google Scholar 

  33. Gavin MA, Bevan MJ . Increased peptide promiscuity provides a rationale for the lack of N regions in the neonatal T cell repertoire. Immunity 1995; 3: 793–800.

    Article  CAS  PubMed  Google Scholar 

  34. Schelonka RL, Ivanov II, Vale AM, Szymanska E, Zemlin M, Gartland GL et al. The CDR-H3 repertoire from TdT-deficient adult bone marrow is a close, but not exact, homologue of the CDR-H3 repertoire from perinatal liver. J Immunol 2010; 185: 6075–6084.

    Article  CAS  PubMed  Google Scholar 

  35. Robey IF, Peterson M, Horwitz MS, Kono DH, Stratmann T, Theofilopoulos AN et al. Terminal deoxynucleotidyltransferase deficiency decreases autoimmune disease in diabetes-prone nonobese diabetic mice and lupus-prone MRL-Fas(lpr) mice. J Immunol 2004; 172: 4624–4629.

    Article  CAS  PubMed  Google Scholar 

  36. Hesse JE, Lieber MR, Gellert M, Mizuuchi K . Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals. Cell 1987; 49: 775–783.

    Article  CAS  PubMed  Google Scholar 

  37. Lieber MR, Hesse JE, Mizuuchi K, Gellert M . Studies of V(D)J recombination with extrachromosomal substrates. Curr Top Microbiol Immunol 1988; 137: 94–99.

    CAS  PubMed  Google Scholar 

  38. Lieber MR, Hesse JE, Mizuuchi K, Gellert M . Developmental stage specificity of the lymphoid V(D)J recombination activity. Genes Dev 1987; 1: 751–761.

    Article  CAS  PubMed  Google Scholar 

  39. Raghavan SC, Hsieh CL, Lieber MR . Both V(D)J coding ends but neither signal end can recombine at the bcl-2 major breakpoint region, and the rejoining is ligase IV dependent. Mol Cell Biol 2005; 25: 6475–6484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gauss GH, Lieber MR . Mechanistic constraints on diversity in human V(D)J recombination. Mol Cell Biol 1996; 16: 258–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bertocci B, De Smet A, Weill JC, Reynaud CA . Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo. Immunity 2006; 25: 31–41.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Q, Chen H, Ojode T, Gao X, Anaya-O'Brien S, Turner NA et al. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood 2012; 120: 181–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allison AC . Genetic control of resistance to human malaria. Curr Opin Immunol 2009; 21: 499–505.

    Article  CAS  PubMed  Google Scholar 

  44. Romain F, Barbosa I, Gouge J, Rougeon F, Delarue M . Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region. Nucleic Acids Res 2009; 37: 4642–4656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Purugganan MM, Shah S, Kearney JF, Roth DB . Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Res 2001; 29: 1638–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nick McElhinny SA, Havener JM, Garcia-Diaz M, Juarez R, Bebenek K, Kee BL et al. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. Mol Cell 2005; 19: 357–366.

    Article  CAS  PubMed  Google Scholar 

  47. Molano ID, Redmond S, Sekine H, Zhang XK, Reilly C, Hutchison F et al. Effect of genetic deficiency of terminal deoxynucleotidyl transferase on autoantibody production and renal disease in MRL/lpr mice. Clin Immunol 2003; 107: 186–197.

    Article  CAS  PubMed  Google Scholar 

  48. Gauss GH, Lieber MR . Unequal signal and coding joint formation in human V(D)J recombination. Mol Cell Biol 1993; 13: 3900–3906.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Spanopoulou E, Cortes P, Shih C, Huang CM, Silver DP, Svec P et al. Localization, interaction, and RNA binding properties of the V(D)J recombination-activating proteins RAG1 and RAG2. Immunity 1995; 3: 715–726.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan SW, Agard EA, Larijani M, Wu GE . Coding joint diversity in mature and immature B-cell lines. Scand J Immunol 2005; 62: 114–118.

    Article  CAS  PubMed  Google Scholar 

  51. Menetski JP, Gellert M . V(D)J recombination activity in lymphoid cell lines is increased by agents that elevate cAMP. Proc Natl Acad Sci USA 1990; 87: 9324–9328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Arthritis Society (grant number 560609) to GEW and by the Canadian Institutes of Health Research (CIHR) (grant number 106583) to VS and YS. AT is the recipient of a CIHR Graduate Student Scholarship. GEW is the recipient of a York University Faculty Association Award held at the University of Canterbury, New Zealand. The substrate plasmid, pGG51, was a generous gift of Dr Michael Lieber, University of Southern California, Los Angeles. The vectors pEBG-hRAG1 and pEBG-hRAG2 were a generous gift of Dr Patricia Q Cortes, Mount Sinai Medical School, New York.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V Saridakis or G E Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troshchynsky, A., Dzneladze, I., Chen, L. et al. Functional analyses of polymorphic variants of human terminal deoxynucleotidyl transferase. Genes Immun 16, 388–398 (2015). https://doi.org/10.1038/gene.2015.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.19

This article is cited by

Search

Quick links