Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A locus on mouse chromosome 13 inversely regulates CD1d expression and the development of invariant natural killer T-cells

Abstract

Invariant natural killer T (iNKT)-cell development is controlled by many polymorphic genes present in commonly used mouse inbred strains. Development of type 1 diabetes (T1D) in NOD mice partly results from their production of fewer iNKT-cells compared with non-autoimmune-prone control strains, including ICR. We previously identified several iNKT-cell quantitative trait genetic loci co-localized with known mouse and human T1D regions in a (NOD × ICR)F2 cross. To further dissect the mechanisms underlying the impaired iNKT-cell compartment in NOD mice, we carried out a series of bone marrow transplantation as well as additional genetic mapping studies. We found that impaired iNKT-cell development in NOD mice was mainly due to the inability of their double-positive (DP) thymocytes to efficiently select this T-cell population. Interestingly, we observed higher levels of CD1d expression by NOD than by ICR DP thymocytes. The genetic control of the inverse relationship between the CD1d expression level on DP thymocytes and the frequency of thymic iNKT-cells was further mapped to a region on chromosome 13 between 60.12 and 70.59 Mb. The NOD allele was found to promote CD1d expression and suppress iNKT-cell development. Our results indicate that genetically controlled physiological variation of CD1d expression levels modulates iNKT-cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bendelac A, Savage PB, Teyton L . The biology of NKT cells. Annu Rev Immunol 2007; 25: 297–336.

    Article  CAS  PubMed  Google Scholar 

  2. Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L . CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr Opin Immunol 2008; 20: 358–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen YG, Tsaih SW, Serreze DV . Genetic control of murine invariant natural killer T-cell development dynamically differs dependent on the examined tissue type. Genes Immun 2012; 13: 164–174.

    Article  CAS  PubMed  Google Scholar 

  4. Chan AC, Serwecinska L, Cochrane A, Harrison LC, Godfrey DI, Berzins SP . Immune characterization of an individual with an exceptionally high natural killer T cell frequency and her immediate family. Clin Exp Immunol 2009; 156: 238–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Montoya CJ, Pollard D, Martinson J, Kumari K, Wasserfall C, Mulder CB et al. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 2007; 122: 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kis J, Engelmann P, Farkas K, Richman G, Eck S, Lolley J et al. Reduced CD4+ subset and Th1 bias of the human iNKT cells in type 1 diabetes mellitus. J Leukoc Biol 2007; 81: 654–662.

    Article  CAS  PubMed  Google Scholar 

  7. Berzins SP, Cochrane AD, Pellicci DG, Smyth MJ, Godfrey DI . Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 2005; 35: 1399–1407.

    Article  CAS  PubMed  Google Scholar 

  8. Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A . Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 2002; 110: 793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen YG, Driver JP, Silveira PA, Serreze DV . Subcongenic analysis of genetic basis for impaired development of invariant NKT cells in NOD mice. Immunogenetics 2007; 59: 705–712.

    Article  CAS  PubMed  Google Scholar 

  10. Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 2003; 171: 2873–2878.

    Article  CAS  PubMed  Google Scholar 

  11. Fletcher JM, Jordan MA, Snelgrove SL, Slattery RM, Dufour FD, Kyparissoudis K et al. Congenic analysis of the NKT cell control gene Nkt2 implicates the peroxisomal protein Pxmp4. J Immunol 2008; 181: 3400–3412.

    Article  CAS  PubMed  Google Scholar 

  12. Hammond KJ, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG . alpha/beta-T cell receptor (TCR)+CD4-CD8- (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 1998; 187: 1047–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV et al. The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001; 7: 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  14. Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A et al. Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med 1998; 188: 1831–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuki N, Stanic AK, Embers ME, Van Kaer L, Morel L, Joyce S . Genetic dissection of V alpha 14J alpha 18 natural T cell number and function in autoimmune-prone mice. J Immunol 2003; 170: 5429–5437.

    Article  CAS  PubMed  Google Scholar 

  16. Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y et al. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 2001; 98: 13838–13843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharif S, Arreaza GA, Zucker P, Mi QS, Sondhi J, Naidenko OV et al. Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat Med 2001; 7: 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  18. Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K, Strominger JL et al. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci USA 2001; 98: 6777–6782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ueno A, Wang J, Cheng L, Im JS, Shi Y, Porcelli SA et al. Enhanced early expansion and maturation of semi-invariant NK T cells inhibited autoimmune pathogenesis in congenic nonobese diabetic mice. J Immunol 2008; 181: 6789–6796.

    Article  CAS  PubMed  Google Scholar 

  20. Wang B, Geng YB, Wang CR ., CD1-restricted NK . T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 2001; 194: 313–320.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zekavat G, Mozaffari R, Arias VJ, Rostami SY, Badkerhanian A, Tenner AJ et al. A novel CD93 polymorphism in non-obese diabetic (NOD) and NZB/W F1 mice is linked to a CD4+ iNKT cell deficient state. Immunogenetics 2010; 62: 397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leiter E, Atkinson M (eds). NOD Mice and Related Strains: Research Applications in Diabetes, AIDS, Cancer and Other Diseases. R.G. Landes Company: Austin, TX, USA, 1998.

  23. Tsaih SW, Khaja S, Ciecko AE, MacKinney E, Chen YG . Genetic control of murine invariant natural killer T cells maps to multiple type 1 diabetes regions. Genes Immun 2013; 14: 380–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 2007; 27: 751–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu T, Simmons A, Yuan J, Bender TP, Alberola-Ila J . The transcription factor c-Myb primes CD4+CD8+ immature thymocytes for selection into the iNKT lineage. Nat Immunol 2010; 11: 435–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M et al. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 2012; 36: 986–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dutta M, Kraus ZJ, Gomez-Rodriguez J, Hwang SH, Cannons JL, Cheng J et al. A role for Ly108 in the induction of promyelocytic zinc finger transcription factor in developing thymocytes. J Immunol 2013; 190: 2121–2128.

    Article  CAS  PubMed  Google Scholar 

  28. Sintes J, Cuenca M, Romero X, Bastos R, Terhorst C, Angulo A et al. Cutting edge: Ly9 (CD229), a SLAM family receptor, negatively regulates the development of thymic innate memory-like CD8+ T and invariant NKT cells. J Immunol 2013; 190: 21–26.

    Article  CAS  PubMed  Google Scholar 

  29. Jordan MA, Fletcher JM, Pellicci D, Baxter AG . Slamf1, the NKT cell control gene Nkt1. J Immunol 2007; 178: 1618–1627.

    Article  CAS  PubMed  Google Scholar 

  30. Jordan MA, Fletcher JM, Jose R, Chowdhury S, Gerlach N, Allison J et al. Role of SLAM in NKT cell development revealed by transgenic complementation in NOD mice. J Immunol 2011; 186: 3953–3965.

    Article  CAS  PubMed  Google Scholar 

  31. Bendelac A . Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 1995; 182: 2091–2096.

    Article  CAS  PubMed  Google Scholar 

  32. Coles MC, Raulet DH . NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J Immunol 2000; 164: 2412–2418.

    Article  CAS  PubMed  Google Scholar 

  33. Schumann J, Pittoni P, Tonti E, Macdonald HR, Dellabona P, Casorati G . Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J Immunol 2005; 175: 7303–7310.

    Article  PubMed  Google Scholar 

  34. Wei DG, Lee H, Park SH, Beaudoin L, Teyton L, Lehuen A et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J Exp Med 2005; 202: 239–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zimmer MI, Colmone A, Felio K, Xu H, Ma A, Wang CR . A cell-type specific CD1d expression program modulates invariant NKT cell development and function. J Immunol 2006; 176: 1421–1430.

    Article  CAS  PubMed  Google Scholar 

  36. Weinreich MA, Odumade OA, Jameson SC, Hogquist KA . T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat Immunol 2010; 11: 709–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA . Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol 2013; 14: 1146–1154.

    Article  CAS  PubMed  Google Scholar 

  38. Honey K, Benlagha K, Beers C, Forbush K, Teyton L, Kleijmeer MJ et al. Thymocyte expression of cathepsin L is essential for NKT cell development. Nat Immunol 2002; 3: 1069–1074.

    Article  CAS  PubMed  Google Scholar 

  39. Borg ZD, Benoit PJ, Lilley GW, Aktan I, Chant A, DeVault VL et al. Polymorphisms in the CD1d promoter that regulate CD1d gene expression are associated with impaired NKT cell development. J Immunol 2014; 192: 189–199.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang F, Liang ZY, Matsuki N, Van Kaer L, Joyce S, Wakeland EK et al. A murine locus on chromosome 18 controls NKT cell homeostasis and Th cell differentiation. J Immunol 2003; 171: 4613–4620.

    Article  CAS  PubMed  Google Scholar 

  41. Tsukamoto K, Ohtsuji M, Shiroiwa W, Lin Q, Nakamura K, Tsurui H et al. Aberrant genetic control of invariant TCR-bearing NKT cell function in New Zealand mouse strains: possible involvement in systemic lupus erythematosus pathogenesis. J Immunol 2008; 180: 4530–4539.

    Article  CAS  PubMed  Google Scholar 

  42. Chun T, Page MJ, Gapin L, Matsuda JL, Xu H, Nguyen H et al. CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J Exp Med 2003; 197: 907–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004; 21: 769–780.

    Article  CAS  PubMed  Google Scholar 

  44. Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA et al. A new standard genetic map for the laboratory mouse. Genetics 2009; 182: 1335–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Broman KW, Wu H, Sen S, Churchill GA . R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003; 19: 889–890.

    Article  CAS  PubMed  Google Scholar 

  46. Sen S, Churchill GA . A statistical framework for quantitative trait mapping. Genetics 2001; 159: 371–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wergedal JE, Ackert-Bicknell CL, Tsaih SW, Sheng MH, Li R, Mohan S et al. Femur mechanical properties in the F2 progeny of an NZB/B1NJ x RF/J cross are regulated predominantly by genetic loci that regulate bone geometry. J Bone Miner Res 2006; 21: 1256–1266.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the NIH tetramer core facility for providing us CD1d tetramers. This work was supported by the National Institutes of Health grants DK077443 and AI110963 (to Y-GC), DK46266 and DK95735 (to DVS), as well as by grants from the Helmsley Charitable Trust (2014PG-T1D048 to DVS), The Juvenile Diabetes Research Foundation, The American Diabetes Association and the Children’s Hospital of Wisconsin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-G Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsaih, SW., Presa, M., Khaja, S. et al. A locus on mouse chromosome 13 inversely regulates CD1d expression and the development of invariant natural killer T-cells. Genes Immun 16, 221–230 (2015). https://doi.org/10.1038/gene.2014.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.81

This article is cited by

Search

Quick links