Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

High-density genotyping of immune loci in Kawasaki disease and IVIG treatment response in European-American case–parent trio study

Subjects

Abstract

Kawasaki disease (KD) is a diffuse and acute small-vessel vasculitis observed in children, and has genetic and autoimmune components. We genotyped 112 case–parent trios of European decent (confirmed by ancestry informative markers) using the immunoChip array, and performed association analyses with susceptibility to KD and intravenous immunoglobulin (IVIG) non-response. KD susceptibility was assessed using the transmission disequilibrium test, whereas IVIG non-response was evaluated using multivariable logistic regression analysis. We replicated single-nucleotide polymorphisms (SNPs) in three gene regions (FCGR, CD40/CDH22 and HLA-DQB2/HLA-DOB) that have been previously associated with KD and provide support to other findings of several novel SNPs in genes with a potential pathway in KD pathogenesis. SNP rs838143 in the 3′-untranslated region of the FUT1 gene (2.7 × 10−5) and rs9847915 in the intergenic region of LOC730109 | BRD7P2 (6.81 × 10−7) were the top hits for KD susceptibility in additive and dominant models, respectively. The top hits for IVIG responsiveness were rs1200332 in the intergenic region of BAZ1A | C14orf19 (1.4 × 10−4) and rs4889606 in the intron of the STX1B gene (6.95 × 10−5) in additive and dominant models, respectively. Our study suggests that genes and biological pathways involved in autoimmune diseases have an important role in the pathogenesis of KD and IVIG response mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kawasaki T . [Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children]. Arerugi 1967; 16: 178–222.

    CAS  PubMed  Google Scholar 

  2. DeLisi LE, Mesen A, Rodriguez C, Bertheau A, LaPrade B, Llach M et al. Genome-wide scan for linkage to schizophrenia in a Spanish-origin cohort from Costa Rica. Am J Med Genet 2002; 114: 497–508.

    Article  Google Scholar 

  3. Huang SK, Lin MT, Chen HC, Huang SC, Wu MH . Epidemiology of Kawasaki disease: prevalence from national database and future trends projection by system dynamics modeling. J Pediatr 2013; 163: 126–31 e1.

    Article  Google Scholar 

  4. Holman RC, Christensen KY, Belay ED, Steiner CA, Effler PV, Miyamura J et al. Racial/ethnic differences in the incidence of Kawasaki syndrome among children in Hawaii. Hawaii Med J 2010; 69: 194–197.

    PubMed  PubMed Central  Google Scholar 

  5. Bayers S, Shulman ST, Paller AS . Kawasaki disease: part II. Complications and treatment. J Am Acad Dermatol 2013; 69: 513 e1–513 e8.

    Article  Google Scholar 

  6. Wang CL, Wu YT, Liu CA, Kuo HC, Yang KD . Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J 2005; 24: 998–1004.

    Article  Google Scholar 

  7. Uehara R, Yashiro M, Nakamura Y, Yanagawa H . Clinical features of patients with Kawasaki disease whose parents had the same disease. Arch Pediatr Adolesc Med 2004; 158: 1166–1169.

    Article  Google Scholar 

  8. Weng KP, Hsieh KS, Ho TY, Huang SH, Lai CR, Chiu YT et al. IL-1B polymorphism in association with initial intravenous immunoglobulin treatment failure in Taiwanese children with Kawasaki disease. Circ J 2010; 74: 544–551.

    Article  CAS  Google Scholar 

  9. Makowsky R, Wiener HW, Ptacek TS, Silva M, Shendre A, Edberg JC et al. FcγR gene copy number in Kawasaki disease and intravenous immunoglobulin treatment response. Pharmacogenet Genomics 2013; 23: 455–462.

    Article  CAS  Google Scholar 

  10. Shrestha S, Wiener HW, Olson AK, Edberg JC, Bowles NE, Patel H et al. Functional FCGR2B gene variants influence intravenous immunoglobulin response in patients with Kawasaki disease. J Allergy Clin Immunol 2011; 128: 677–680.

    Article  CAS  Google Scholar 

  11. Shrestha S, Wiener HW, Shendre A, Kaslow RA, Wu J, Olson AK et al. Role of activating FcγR gene polymorphisms in Kawasaki disease susceptibility and intravenous immunoglobulin response. Circ Cardiovasc Genet 2012; 5: 309–316.

    Article  CAS  Google Scholar 

  12. Portman MA, Wiener HW, Silva M, Shendre A, Shrestha S . DC-SIGN gene promoter variants and IVIG treatment response in Kawasaki disease. Pediatr Rheumatol Online J 2013; 11: 32.

    Article  Google Scholar 

  13. Yan Y, Ma Y, Liu Y, Hu H, Shen Y, Zhang S et al. Combined analysis of genome-wide-linked susceptibility loci to Kawasaki disease in Han Chinese. Hum Genet 2013; 132: 669–680.

    Article  CAS  Google Scholar 

  14. Fehrmann RS, Jansen RC, Veldink JH, Westra HJ, Arends D, Bonder MJ et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet 2011; 7: e1002197.

    Article  CAS  Google Scholar 

  15. Fairfax BP, Makino S, Radhakrishnan J, Plant K, Leslie S, Dilthey A et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet 2012; 44: 502–510.

    Article  CAS  Google Scholar 

  16. Kramer U, Illig T, Grune T, Krutmann J, Esser C . Strong associations of psoriasis with antigen processing LMP and transport genes TAP differ by gender and phenotype. Genes Immun 2007; 8: 513–517.

    Article  CAS  Google Scholar 

  17. Moins-Teisserenc H, Semana G, Alizadeh M, Loiseau P, Bobrynina V, Deschamps I et al. TAP2 gene polymorphism contributes to genetic susceptibility to multiple sclerosis. Hum Immun 1995; 42: 195–202.

    Article  CAS  Google Scholar 

  18. Singal DP, Ye M, Qiu X, D'Souza M . Polymorphisms in the TAP2 gene and their association with rheumatoid arthritis. Clin Exp Rheumatol 1994; 12: 29–33.

    CAS  PubMed  Google Scholar 

  19. Wordsworth BP, Pile KD, Gibson K, Burney RO, Mockridge I, Powis SH . Analysis of the MHC-encoded transporters TAP1 and TAP2 in rheumatoid arthritis: linkage with DR4 accounts for the association with a minor TAP2 allele. Tissue Antigens 1993; 42: 153–155.

    Article  CAS  Google Scholar 

  20. Wang CL, Wu YT, Liu CA, Lin MW, Lee CJ, Huang LT et al. Expression of CD40 ligand on CD4+ T-cells and platelets correlated to the coronary artery lesion and disease progress in Kawasaki disease. Pediatrics 2003; 111: E140–E147.

    Article  Google Scholar 

  21. Zhou J, Li J, Chen J, Liu Y, Gao W, Ding Y . Over-expression of CDH22 is associated with tumor progression in colorectal cancer. Tumour Biol 2009; 30: 130–140.

    Article  CAS  Google Scholar 

  22. Khor CC, Davila S, Breunis WB, Lee YC, Shimizu C, Wright VJ et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 2011; 43: 1241–1246.

    Article  CAS  Google Scholar 

  23. Onouchi Y . Genetics of Kawasaki disease: what we know and don't know. Circ J 2012; 76: 1581–1586.

    Article  CAS  Google Scholar 

  24. Kuo HC, Chang WC . Genetic polymorphisms in Kawasaki disease. Acta Pharmacol Sinic 2011; 32: 1193–1198.

    Article  CAS  Google Scholar 

  25. Zhou H, Yu Y, Li H, Shi W, Yang H, Liu C et al. Anti-H can trigger apoptosis and down-regulate FUT1 expression in erythroid differentiated K562 cells without complement mediation. Transplant Immunol 2012; 27: 151–156.

    Article  CAS  Google Scholar 

  26. Armistead PM, Mohseni M, Gerwin R, Walsh EC, Iravani M, Chahardouli B et al. Erythroid-lineage-specific engraftment in patients with severe hemoglobinopathy following allogeneic hematopoietic stem cell transplantation. Exp Hematol 2008; 36: 1205–1215.

    Article  CAS  Google Scholar 

  27. Isozaki T, Ruth JH, Amin MA, Campbell PL, Tsou PS, Ha CM et al. Fucosyltransferase 1 mediates angiogenesis, cell adhesion and rheumatoid arthritis synovial tissue fibroblast proliferation. Arthritis Res Ther 2014; 16: R28.

    Article  Google Scholar 

  28. Moehler TM, Sauer S, Witzel M, Andrulis M, Garcia-Vallejo JJ, Grobholz R et al. Involvement of alpha 1-2-fucosyltransferase I (FUT1) and surface-expressed Lewis(y) (CD174) in first endothelial cell-cell contacts during angiogenesis. J Cell Physiol 2008; 215: 27–36.

    Article  CAS  Google Scholar 

  29. Moore GT, Brown SJ, Winterhalter AC, Lust M, Salvaris EJ, Selan C et al. Glycosylation changes in hFUT1 transgenic mice increase TCR signaling and apoptosis resulting in thymocyte maturation arrest. Mol Immunol 2008; 45: 2401–2410.

    Article  CAS  Google Scholar 

  30. Zhang Z, Sun P, Liu J, Fu L, Yan J, Liu Y et al. Suppression of FUT1/FUT4 expression by siRNA inhibits tumor growth. Biochim Biophys Acta 2008; 1783: 287–296.

    Article  CAS  Google Scholar 

  31. Nakamura H, Jasper MJ, Hull ML, Aplin JD, Robertson SA . Macrophages regulate expression of alpha1,2-fucosyltransferase genes in human endometrial epithelial cells. Mol Hum Reprod 2012; 18: 204–215.

    Article  CAS  Google Scholar 

  32. Xu K, Chong DC, Rankin SA, Zorn AM, Cleaver O . Rasip1 is required for endothelial cell motility, angiogenesis and vessel formation. Dev Biol 2009; 329: 269–279.

    Article  CAS  Google Scholar 

  33. Xu K, Sacharidou A, Fu S, Chong DC, Skaug B, Chen ZJ et al. Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 2011; 20: 526–539.

    Article  CAS  Google Scholar 

  34. Ikram MK, Sim X, Jensen RA, Cotch MF, Hewitt AW, Ikram MA et al. Four novel Loci (19q13, 6q24, 12q24, and 5q14) influence the microcirculation in vivo. PLoS Genet 2010; 6: e1001184.

    Article  Google Scholar 

  35. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010; 42: 1118–1125.

    Article  CAS  Google Scholar 

  36. ENSEMBL BRD7P2 phenotypes http://useast.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000184100;r=3:159000000-160700000.

  37. Ballester V, Vendrell R, Haritunians T, Klomhaus A, Guo X, McGovern DP et al. Su1761 A Baz1a haplotype with ancient American ancestry contributes to IBD in Puerto Ricans. Gastroenterology 2013; 144: S-470.

    Article  Google Scholar 

  38. Sanchez-Molina S, Mortusewicz O, Bieber B, Auer S, Eckey M, Leonhardt H et al. Role for hACF1 in the G2/M damage checkpoint. Nucleic Acids Res 2011; 39: 8445–8456.

    Article  CAS  Google Scholar 

  39. Uhlenbrock K, Huber J, Ardati A, Busch AE, Kostenis E . Fluid shear stress differentially regulates gpr3, gpr6, and gpr12 expression in human umbilical vein endothelial cells. Cell Physiol Biochem 2003; 13: 75–84.

    Article  CAS  Google Scholar 

  40. Perricone C, Ciccacci C, Ceccarelli F, Di Fusco D, Spinelli FR, Cipriano E et al. TRAF3IP2 gene and systemic lupus erythematosus: association with disease susceptibility and pericarditis development. Immunogenetics 2013; 65: 703–709.

    Article  CAS  Google Scholar 

  41. Bennett MK, Calakos N, Scheller RH . Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992; 257: 255–259.

    Article  CAS  Google Scholar 

  42. Smirnova T, Miniou P, Viegas-Pequignot E, Mallet J . Assignment of the human syntaxin 1B gene (STX) to chromosome 16p11.2 by fluorescence in situ hybridization. Genomics 1996; 36: 551–553.

    Article  CAS  Google Scholar 

  43. Gomez-Jaramillo L, Delgado-Perez L, Reales E, Mora-Lopez F, Mateos RM, Garcia-Poley A et al. Syntaxin-4 is implicated in the secretion of antibodies by human plasma cells. J Leukoc Biol 2014; 95: 305–312.

    Article  Google Scholar 

  44. Rahman A, Decourcey J, Larbi NB, Loughran ST, Walls D, Loscher CE . Syntaxin-4 is essential for IgE secretion by plasma cells. Biochem Biophys Res Commun 2013; 440: 163–167.

    Article  CAS  Google Scholar 

  45. Pennica D, Swanson TA, Shaw KJ, Kuang WJ, Gray CL, Beatty BG et al. Human cardiotrophin-1: protein and gene structure, biological and binding activities, and chromosomal localization. Cytokine 1996; 8: 183–189.

    Article  CAS  Google Scholar 

  46. Robador PA, Moreno MU, Beloqui O, Varo N, Redon J, Fortuno A et al. Protective effect of the 1742(C/G) polymorphism of human cardiotrophin-1 against left ventricular hypertrophy in essential hypertension. J Hypertens 2010; 28: 2219–2226.

    Article  CAS  Google Scholar 

  47. Erdmann J, Hassfeld S, Kallisch H, Fleck E, Regitz-Zagrose V . Genetic variants in the promoter (g983G>T) and coding region (A92T) of the human cardiotrophin-1 gene (CTF1) in patients with dilated cardiomyopathy. Hum Mutat 2000; 16: 448.

    Article  CAS  Google Scholar 

  48. Drobic V, Cunnington RH, Bedosky KM, Raizman JE, Elimban VV, Rattan SG et al. Differential and combined effects of cardiotrophin-1 and TGF-beta1 on cardiac myofibroblast proliferation and contraction. Am J Physiol Heart Circ Physiol 2007; 293: H1053–H1064.

    Article  CAS  Google Scholar 

  49. Robador PA, San Jose G, Rodriguez C, Guadall A, Moreno MU, Beaumont J et al. HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia. Cardiovasc Res 2011; 92: 247–255.

    Article  CAS  Google Scholar 

  50. Kumar V, Westra HJ, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet 2013; 9: e1003201.

    Article  CAS  Google Scholar 

  51. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 2004; 110: 2747–2771.

    Article  Google Scholar 

  52. Cortes A, Brown MA . Promise and pitfalls of the Immunochip. Arthritis Res Ther 2011; 13: 101.

    Article  Google Scholar 

  53. Parkes M, Cortes A, van Heel DA, Brown MA . Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 2013; 14: 661–673.

    Article  CAS  Google Scholar 

  54. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  55. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The parent study and this genetic sub-study conformed to the procedures for informed consent (parental permission) approved by institutional review boards at all sponsoring organizations and to human-experimentation guidelines set forth by the United States Department of Health and Human Services. We thank the participating patients and their parents. We also thank investigators (Neil E Bowles at Department of Pediatrics, University of Utah, Salt Lake City, UT; Hitendra Patel at Children’s Hospital of Oakland, Oakland, CA), pediatricians and staffs of the participating clinics. This study was supported by grants NHLBI-R21-HL90558 & The American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Shrestha.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shendre, A., Wiener, H., Zhi, D. et al. High-density genotyping of immune loci in Kawasaki disease and IVIG treatment response in European-American case–parent trio study. Genes Immun 15, 534–542 (2014). https://doi.org/10.1038/gene.2014.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.47

This article is cited by

Search

Quick links