Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic associations and functional characterization of M1 aminopeptidases and immune-mediated diseases

Abstract

Endosplasmic reticulum aminopeptidase 1 (ERAP1), endoplasmic reticulum aminopeptidase 2 (ERAP2) and puromycin-sensitive aminopeptidase (NPEPPS) are key zinc metallopeptidases that belong to the oxytocinase subfamily of M1 aminopeptidase family. NPEPPS catalyzes the processing of proteosome-derived peptide repertoire followed by trimming of antigenic peptides by ERAP1 and ERAP2 for presentation on major histocompatibility complex (MHC) Class I molecules. A series of genome-wide association studies have demonstrated associations of these aminopeptidases with a range of immune-mediated diseases such as ankylosing spondylitis, psoriasis, Behçet’s disease, inflammatory bowel disease and type I diabetes, and significantly, genetic interaction between some aminopeptidases and HLA Class I loci with which these diseases are strongly associated. In this review, we highlight the current state of understanding of the genetic associations of this class of genes, their functional role in disease, and potential as therapeutic targets.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. Rawlings ND, Salvesen G . Handbook of Proteolytic Enzymes. Elsevier, London, UK, 2013.

    Google Scholar 

  2. Rawlings ND, Barrett AJ . Evolutionary families of peptidases. Biochem J. 1993; 290: 205–218.

    CAS  Article  Google Scholar 

  3. Kochan G, Krojer T, Harvey D, Fischer R, Chen L, Vollmar M et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc Natl Acad Sci 2011; 108: 7745–7750.

    CAS  Article  Google Scholar 

  4. Nguyen TT, Chang SC, Evnouchidou I, York IA, Zikos C, Rock KL et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat Struct Mol Biol 2011; 18: 604–613.

    CAS  Article  Google Scholar 

  5. Birtley JR, Saridakis E, Stratikos E, Mavridis IM . The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing. Biochemistry 2012; 51: 286–295.

    CAS  Article  Google Scholar 

  6. Albiston AL, Ye S, Chai SY . Membrane bound members of the M1 family: more than aminopeptidases. Protein Pept Lett 2004; 11: 491–500.

    CAS  Article  Google Scholar 

  7. Fukasawa KM, Fukasawa K, Harada M, Hirose J, Izumi T, Shimizu T . Aminopeptidase B is structurally related to leukotriene-A4 hydrolase but is not a bifunctional enzyme with epoxide hydrolase activity. Biochem J 1999; 339: 497–502.

    CAS  Article  Google Scholar 

  8. Saito S, Sakai M, Sasaki Y, Nakashima A, Shiozaki A . Inadequate tolerance induction may induce pre-eclampsia. J Reprod Immunol. 2007; 76: 30–39.

    CAS  Article  Google Scholar 

  9. Vanhille DL, Hill LD, Hilliard DD, Lee ED, Teves ME, Srinivas S et al. A novel ERAP2 haplotype structure in a Chilean Population: implications for ERAP2 protein expression and preeclampsia risk. Mol Genet Genomic Med 2013; 1: 98–107.

    CAS  Article  Google Scholar 

  10. Mehta AM, Jordanova ES, Kenter GG, Ferrone S, Fleuren GJ . Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunol Immunother 2008; 57: 197–206.

    CAS  Article  Google Scholar 

  11. Mehta AM, Jordanova ES, Corver WE, van Wezel T, Uh HW, Kenter GG et al. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes Chromosomes Cancer 2009; 48: 410–418.

    CAS  Article  Google Scholar 

  12. Fung EY, Smyth DJ, Howson JM, Cooper JD, Walker NM, Stevens H et al. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun 2009; 10: 188–191.

    CAS  Article  Google Scholar 

  13. Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 2013; 45: 730–738.

    CAS  Article  Google Scholar 

  14. Reveille JD . The genetic basis of ankylosing spondylitis. Curr Opin Rheumatol 2006; 18: 332–341.

    CAS  Article  Google Scholar 

  15. Brown MA . Genetics of ankylosing spondylitis. Curr Opin Rheumatol 2010; 22: 126–132.

    CAS  Article  Google Scholar 

  16. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2, Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2 Strange A, Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2 Capon F, Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2 Spencer CC, Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2 Knight J, Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2 Weale ME et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010; 42: 985–990.

    Article  Google Scholar 

  17. Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E et al. Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1. Nat Genet 2013; 45: 202–207.

    CAS  Article  Google Scholar 

  18. Gül A . Genetics of Behçet's disease: lessons learned from genomewide association studies. Curr Opin Rheumatol 2013; 26: 56–63.

    Article  Google Scholar 

  19. Guerini FR, Cagliani R, Forni D, Agliardi C, Caputo D, Cassinotti A et al. A functional variant in ERAP1 predisposes to multiple sclerosis. PLoS ONE 2012; 7: e29931.

    CAS  Article  Google Scholar 

  20. Christodoulou K, Wiskin AE, Gibson J, Tapper W, Willis C, Afzal NA et al. Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut 2013; 62: 977–984.

    CAS  Article  Google Scholar 

  21. Franke A, McGovern DP, Barrett GC, Wang K, Radford-Smith GL, Ahmad T et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010; 42: 1118–1125.

    CAS  Article  Google Scholar 

  22. Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondyloarthritis Consortium (TASC), Wellcome Trust Case Control Consortium Burton PR, Wellcome Trust Case Control Consortium Clayton DG, Wellcome Trust Case Control Consortium Cardon LR, Wellcome Trust Case Control Consortium Craddock N et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39: 1329–1337.

    Article  Google Scholar 

  23. Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 2011; 43: 761–767.

    CAS  Article  Google Scholar 

  24. Li C, Lin Z, Xie Y, Guo Z, Huang J, Wei Q et al. ERAP1 is associated with ankylosing Spondylitis in Han Chinese. J Rheumatol 2011; 38: 317–321.

    CAS  Article  Google Scholar 

  25. Pazar B, Safrany E, Gergely P, Szanto S, Szekanecz Z, Poor G . Association of ARTS1 gene polymorphisms with ankylosing spondylitis in the Hungarian population: the rs27044 variant is associated with HLA-B*2705 subtype in Hungarian patients with ankylosing spondylitis. J Rheumatol 2010; 37: 379–384.

    CAS  Article  Google Scholar 

  26. Pimentel-Santos FM, Ligeiro D, Matos M, Mourao AF, Sousa E, Pinto P et al. Association of IL23R and ERAP1 genes with ankylosing spondylitis in a Portuguese population. Clin Exp Rheumatol 2009; 27: 800–806.

    CAS  PubMed  Google Scholar 

  27. Australo-Anglo-American Spondyloarthritis C, Reveille JD, Sims AM, Danoy P, Evans DM, Leo P et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet 2010; 42: 123–127.

    Article  Google Scholar 

  28. Szczypiorska M, Sanchez A, Bartolome N, Arteta D, Sanz J, Brito E et al. ERAP1 polymorphisms and haplotypes are associated with ankylosing spondylitis susceptibility and functional severity in a Spanish population. Rheumatology (Oxford) 2011; 50: 1969–1975.

    CAS  Article  Google Scholar 

  29. Davidson SI, Liu Y, Danoy PA, Wu X, Thomas GP, Jiang L et al. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese. Ann Rheum Dis 2011; 70: 289–292.

    CAS  Article  Google Scholar 

  30. Davidson SI, Wu X, Liu Y, Wei M, Danoy PA, Thomas G et al. Association of ERAP1, but not IL23R, with ankylosing spondylitis in a Han Chinese population. Arthritis Rheum 2009; 60: 3263–3268.

    CAS  Article  Google Scholar 

  31. Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010; 42: 985–990.

    CAS  Article  Google Scholar 

  32. Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet 2013; 45: 664–669.

    CAS  Article  Google Scholar 

  33. Krige D, Needham LA, Bawden LJ, Flores N, Farmer H, Miles LE et al. CHR-2797: an antiproliferative aminopeptidase inhibitor that leads to amino acid deprivation in human leukemic cells. Cancer Res 2008; 68: 6669–6679.

    CAS  Article  Google Scholar 

  34. Hitzerd SM, Verbrugge SE, Ossenkoppele G, Jansen G, Peters GJ . Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids 2014; 46: 793–808.

    CAS  Article  Google Scholar 

  35. Saric T, Chang SC, Hattori A, York IA, Markant S, Rock KL et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 2002; 3: 1169–1176.

    CAS  Article  Google Scholar 

  36. York IA, Chang SC, Saric T, Keys JA, Favreau JM, Goldberg AL et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat Immunol 2002; 3: 1177–1184.

    CAS  Article  Google Scholar 

  37. Ouyang C, Smith DD, Krontiris TG . Evolutionary signatures of common human cis-regulatory haplotypes. PLoS ONE 2008; 3: e3362.

    Article  Google Scholar 

  38. Harvey D, Pointon JJ, Evans DM, Karaderi T, Farrar C, Appleton LH et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum Mol Genet 2009; 18: 4204–4212.

    CAS  Article  Google Scholar 

  39. Nguyen TT, Chang SC, Evnouchidou I, York IA, Zikos C, Rock KL et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat Struct Mol Biol 2011; 18: 604–613.

    CAS  Article  Google Scholar 

  40. Stratikos E, Stern LJ . Antigenic peptide trimming by ER aminopeptidases—insights from structural studies. Mol Immunol 2013; 55: 212–219.

    CAS  Article  Google Scholar 

  41. Goto Y, Tanji H, Hattori A, Tsujimoto M . Glutamine-181 is crucial in the enzymatic activity and substrate specificity of human endoplasmic-reticulum aminopeptidase-1. Biochem J 2008; 416: 109–116.

    CAS  Article  Google Scholar 

  42. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 2004; 428: 493–521.

    CAS  Article  Google Scholar 

  43. Haroon N, Inman RD . Endoplasmic reticulum aminopeptidases: Biology and pathogenic potential. Nat Rev Rheumatol 2010; 6: 461–467.

    CAS  Article  Google Scholar 

  44. Ascher DB, Polekhina G, Parker MW . Crystallization and preliminary X-ray diffraction analysis of human endoplasmic reticulum aminopeptidase 2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68: 468–471.

    CAS  Article  Google Scholar 

  45. Zervoudi E, Papakyriakou A, Georgiadou D, Evnouchidou I, Gajda A, Poreba M et al. Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides. Biochem J 2011; 435: 411–420.

    CAS  Article  Google Scholar 

  46. Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, Lepelletier Y et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 2005; 6: 689–697.

    CAS  Article  Google Scholar 

  47. Andres AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet 2010; 6: e1001157.

    Article  Google Scholar 

  48. Evnouchidou I, Birtley J, Seregin S, Papakyriakou A, Zervoudi E, Samiotaki M et al. A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing. J Immunol 2012; 189: 2383–2392.

    CAS  Article  Google Scholar 

  49. McLellan S, Dyer SH, Rodriguez G, Hersh LB . Studies on the tissue distribution of the puromycin-sensitive enkephalin-degrading aminopeptidases. J Neurochem 1988; 51: 1552–1559.

    CAS  Article  Google Scholar 

  50. Dyer SH, Slaughter CA, Orth K, Moomaw CR, Hersh LB . Comparison of the soluble and membrane-bound forms of the puromycin-sensitive enkephalin-degrading aminopeptidases from rat. J Neurochem 1990; 54: 547–554.

    CAS  Article  Google Scholar 

  51. Johnson GD, Hersh LB . Studies on the subsite specificity of the rat brain puromycin-sensitive aminopeptidase. Arch Biochem Biophys 1990; 276: 305–309.

    CAS  Article  Google Scholar 

  52. Safavi A, Hersh LB . Degradation of dynorphin-related peptides by the puromycin-sensitive aminopeptidase and aminopeptidase M. J Neurochem 1995; 65: 389–395.

    CAS  Article  Google Scholar 

  53. Kudo LC, Parfenova L, Ren G, Vi N, Hui M, Ma Z et al. Puromycin-sensitive aminopeptidase (PSA/NPEPPS) impedes development of neuropathology in hPSA/TAU(P301L) double-transgenic mice. Hum Mol Genet 2011; 20: 1820–1833.

    CAS  Article  Google Scholar 

  54. Thompson MW, Govindaswami M, Hersh LB . Mutation of active site residues of the puromycin-sensitive aminopeptidase: conversion of the enzyme into a catalytically inactive binding protein. Arch Biochem Biophys 2003; 413: 236–242.

    CAS  Article  Google Scholar 

  55. Haroon N, Tsui FW, Uchanska-Ziegler B, Ziegler A, Inman RD . Endoplasmic reticulum aminopeptidase 1 (ERAP1) exhibits functionally significant interaction with HLA-B27 and relates to subtype specificity in ankylosing spondylitis. Ann Rheum Dis 2012; 71: 589–595.

    CAS  Article  Google Scholar 

  56. Alvarez-Navarro C, López de Castro JA . ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol 2013; 57 (1): 12–21.

    Article  Google Scholar 

  57. García-Medel N, Sanz-Bravo A, Van Nguyen D, Galocha B, Gómez-Molina P, Martín-Esteban A et al. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 1 polymorphism and HLA-B27 in vivo. Mol Cell Proteomics 2012; 11: 1416–1429.

    Article  Google Scholar 

  58. Martín-Esteban A, Gómez-Molina P, Sanz-Bravo A, López de Castro J . Combined effects of ankylosing spondylitis-associated ERAP1 polymorphisms outside the catalytic and peptide-binding sites on the processing of natural HLA-B27 ligands. J Biol Chem 2014; 289: 3978–3990.

    Article  Google Scholar 

  59. Alvarez-Navarro C, López de Castro J . ERAP1 in ankylosing spondylitis: genetics, biology and pathogenetic role. Curr Opin Rheumatol 2013; 25: 419–425.

    CAS  Article  Google Scholar 

  60. Chen L, Fischer R, Peng Y, Reeves E, McHugh K, Ternette N et al. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis Rheumatol 2014; 66: 284–294.

    CAS  Article  Google Scholar 

  61. Akram A, Lin A, Gracey E, Streutker CJ, Inman RD . HLA-B27, but not HLA-B7, immunodominance to Influenza is ERAP dependent. J Immunol 2014; 192 (12): 5520–5528.

    CAS  Article  Google Scholar 

  62. Akram A, Inman RD . Co-expression of HLA-B7 and HLA-B27 alleles is associated with B7-restricted immunodominant responses following influenza infection. Eur J Immunol 2013; 43: 3254–3267.

    CAS  Article  Google Scholar 

  63. Cortes A, de Bakker P, Brown MA . Fine-mapping major histocompatibility complex variation associated with ankylosing spondylitis susceptibility. In American College of Rheumatology. Arthritis Rheum 2013; 12: 1706.

    Google Scholar 

  64. Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Ye S et al. Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 2008; 22: 4209–4217.

    CAS  Article  Google Scholar 

  65. Ocain TD, Rich DH . L-lysinethiol: a subnanomolar inhibitor of aminopeptidase B. Biochem Biophys Res Commun 1987; 145: 1038–1042.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Brown.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agrawal, N., Brown, M. Genetic associations and functional characterization of M1 aminopeptidases and immune-mediated diseases. Genes Immun 15, 521–527 (2014). https://doi.org/10.1038/gene.2014.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.46

Further reading

Search

Quick links