Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced LPS-induced peritonitis in mice deficiency of cullin 4B in macrophages

Abstract

Cullin 4B (CUL4B), a member of the cullin protein family, is a scaffold protein of the CUL4B–RING–E3 ligase complex that ubiquitinates intracellular proteins.CUL4B’s targets include cell cycle-regulated proteins and DNA replication-related molecules. In this study, we generated myeloid-specific Cul4b-deficient mice (Cul4bf/y;LysM-CreKI/KI) to investigate the influence of Cul4b deficiency on innate immunity, especially on the function of macrophages. Our results show that an intraperitoneal injection of lipopolysaccharide (LPS) led to a significant decrease in body weights and increased leukocyte infiltrates with increased chemokines in the peritoneal cavity of Cul4bf/y;LysM-CreKI/KI mice. However, the proinflammatory cytokines, IL-6 and TNF-α did not increase in LPS-injected Cul4bf/y;LysM-CreKI/KI mice. Furthermore, bone marrow-derived macrophages from Cul4bf/y;LysM-CreKI/KI mice secreted higher levels of chemokines but lower levels of TNF-α and IL-6 upon LPS stimulation. Of note, increased proliferation of Cul4b-deficient macrophages was also observed. These results show that myeloid-specific Cul4b deficiency worsens LPS-induced peritonitis. In addition, Cul4b deficiency leads to enhanced DNA replication and proliferation, increased production of chemokines but a decreased production of proinflammatory cytokines of macrophages. Our data highlight a new role of cullin family, CUL4B, in the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Lee J, Zhou P . Pathogenic role of the CRL4 ubiquitin ligase in human disease. Front Oncol 2012; 2: 21.

    PubMed  PubMed Central  Google Scholar 

  2. Petroski MD, Deshaies RJ . Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6: 9–20.

    Article  CAS  Google Scholar 

  3. Jackson S, Xiong Y . CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34: 562–570.

    Article  CAS  PubMed Central  Google Scholar 

  4. Sarikas A, Hartmann T, Pan ZQ . The cullin protein family. Genome Biol 2011; 12: 220.

    Article  CAS  PubMed Central  Google Scholar 

  5. Higa LA, Mihaylov IS, Banks DP, Zheng J, Zhang H . Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol 2003; 5: 1008–1015.

    Article  CAS  Google Scholar 

  6. Higa LA, Yang X, Zheng J, Banks D, Wu M, Ghosh P et al. Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle 2006; 5: 71–77.

    Article  CAS  Google Scholar 

  7. Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem 2009; 284: 33320–33332.

    Article  CAS  PubMed Central  Google Scholar 

  8. Hu H, Yang Y, Ji Q, Zhao W, Jiang B, Liu R et al. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell 2012; 22: 781–795.

    Article  CAS  PubMed Central  Google Scholar 

  9. Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H et al. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 2007; 446: 562–566.

    Article  CAS  Google Scholar 

  10. Zou Y, Liu Q, Chen B, Zhang X, Guo C, Zhou H et al. Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet 2007; 80: 561–566.

    Article  CAS  PubMed Central  Google Scholar 

  11. Tarpey PS, Raymond FL, O'Meara S, Edkins S, Teague J, Butler A et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet 2007; 80: 345–352.

    Article  CAS  PubMed Central  Google Scholar 

  12. Pfeiffer JR, Brooks SA . Cullin 4B is recruited to tristetraprolin-containing messenger ribonucleoproteins and regulates TNF-alpha mRNA polysome loading. J Immunol 2012; 188: 1828–1839.

    Article  CAS  Google Scholar 

  13. Serbina NV, Jia T, Hohl TM, Pamer EG . Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 2008; 26: 421–452.

    Article  CAS  PubMed Central  Google Scholar 

  14. Takeda K, Kaisho T, Akira S . Toll-like receptors. Annu Rev Immunol 2003; 21: 335–376.

    Article  CAS  PubMed Central  Google Scholar 

  15. Gordon S, Taylor PR . Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953–964.

    Article  CAS  Google Scholar 

  16. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K . Development of monocytes, macrophages, and dendritic cells. Science 2010; 327: 656–661.

    Article  CAS  PubMed Central  Google Scholar 

  17. Jiang B, Zhao W, Yuan J, Qian Y, Sun W, Zou Y et al. Lack of Cul4b, an E3 ubiquitin ligase component, leads to embryonic lethality and abnormal placental development. PLoS One 2012; 7: e37070.

    Article  CAS  PubMed Central  Google Scholar 

  18. Liu L, Yin Y, Li Y, Prevedel L, Lacy EH, Ma L et al. Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis. Cell Res 2012; 22: 1258–1269.

    Article  CAS  PubMed Central  Google Scholar 

  19. Underhill DM, Goodridge HS . Information processing during phagocytosis. Nat Rev Immunol 2012; 12: 492–502.

    Article  CAS  PubMed Central  Google Scholar 

  20. Davies LC, Jenkins SJ, Allen JE, Taylor PR . Tissue-resident macrophages. Nat Immunol 2013; 14: 986–995.

    Article  CAS  PubMed Central  Google Scholar 

  21. Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol 2005; 174: 2336–2342.

    Article  CAS  Google Scholar 

  22. Randow F, Lehner PJ . Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 2009; 11: 527–534.

    Article  CAS  Google Scholar 

  23. Andrejeva J, Poole E, Young DF, Goodbourn S, Randall RE . The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J Virol 2002; 76: 11379–11386.

    Article  CAS  PubMed Central  Google Scholar 

  24. Ulane CM, Horvath CM . Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 2002; 304: 160–166.

    Article  CAS  Google Scholar 

  25. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011; 332: 1284–1288.

    Article  CAS  PubMed Central  Google Scholar 

  26. Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F et al. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 2013; 4: 1886.

    Article  Google Scholar 

  27. Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR . A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol 2011; 41: 2155–2164.

    Article  CAS  Google Scholar 

  28. Carballo E, Lai WS, Blackshear PJ . Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 2000; 95: 1891–1899.

    CAS  PubMed  Google Scholar 

  29. Van Tubergen EA, Banerjee R, Liu M, Vander Broek R, Light E, Kuo S et al. Inactivation or loss of TTP promotes invasion in head and neck cancer via transcript stabilization and secretion of MMP9, MMP2, and IL-6. Clin Cancer Res 2013; 19: 1169–1179.

    Article  CAS  PubMed Central  Google Scholar 

  30. Kang JG, Amar MJ, Remaley AT, Kwon J, Blackshear PJ, Wang PY et al. Zinc finger protein tristetraprolin interacts with CCL3 mRNA and regulates tissue inflammation. J Immunol 2011; 187: 2696–2701.

    Article  CAS  PubMed Central  Google Scholar 

  31. Carballo E, Lai WS, Blackshear PJ . Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 1998; 281: 1001–1005.

    Article  CAS  Google Scholar 

  32. Mantovani A, Locati M . Orchestration of macrophage polarization. Blood 2009; 114: 3135–3136.

    Article  CAS  Google Scholar 

  33. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M . The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677–686.

    Article  CAS  Google Scholar 

  34. Chen CY, Tsai MS, Lin CY, Yu IS, Chen YT, Lin SR et al. Rescue of the genetically engineered Cul4b mutant mouse as a potential model for human X-linked mental retardation. Hum Mol Genet 2012; 21: 4270–4285.

    Article  CAS  Google Scholar 

  35. Mestas J, Hughes CC . Of mice and not men: differences between mouse and human immunology. J Immunol 2004; 172: 2731–2738.

    Article  CAS  Google Scholar 

  36. Coelho AL, Schaller MA, Benjamim CF, Orlofsky AZ, Hogaboam CM, Kunkel SL . The chemokine CCL6 promotes innate immunity via immune cell activation and recruitment. J Immunol 2007; 179: 5474–5482.

    Article  CAS  Google Scholar 

  37. Luther SA, Cyster JG . Chemokines as regulators of T cell differentiation. Nat Immunol 2001; 2: 102–107.

    Article  CAS  Google Scholar 

  38. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I . Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 1999; 8: 265–277.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Council, Taiwan (NSC99-2320-B-002-060-MY3). We thank Dr Chun-Yu Chen for critical reading the manuscript and technical support. We thank the technical services provided by the ‘Transgenic Mouse Model Core Facility of the National Core Facility Program for Biotechnology, National Science Council’ and the ‘Gene Knockout Mouse Core Laboratory of National Taiwan University Center of Genomic Medicine’. We thank the Taiwan Mouse Clinic (NSC 102-2325-B-001-042), which is funded by the National Research Program for Biopharmaceuticals (NRPB) at the National Science Council (NSC) of Taiwan for technical support in CBC experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S-W Lin or Y-H Chuang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hung, MH., Jian, YR., Tsao, CC. et al. Enhanced LPS-induced peritonitis in mice deficiency of cullin 4B in macrophages. Genes Immun 15, 404–412 (2014). https://doi.org/10.1038/gene.2014.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.32

This article is cited by

Search

Quick links