Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epiregulin (EREG) and human V-ATPase (TCIRG1): genetic variation, ethnicity and pulmonary tuberculosis susceptibility in Guinea-Bissau and The Gambia

Abstract

We analyzed two West African samples (Guinea-Bissau: n=289 cases and 322 controls; The Gambia: n=240 cases and 248 controls) to evaluate single-nucleotide polymorphisms (SNPs) in Epiregulin (EREG) and V-ATPase (T-cell immune regulator 1 (TCIRG1)) using single and multilocus analyses to determine whether previously described associations with pulmonary tuberculosis (PTB) in Vietnamese and Italians would replicate in African populations. We did not detect any significant single locus or haplotype associations in either sample. We also performed exploratory pairwise interaction analyses using Visualization of Statistical Epistasis Networks (ViSEN), a novel method to detect only interactions among multiple variables, to elucidate possible interaction effects between SNPs and demographic factors. Although we found no strong evidence of marginal effects, there were several significant pairwise interactions that were identified in either the Guinea-Bissau or the Gambian samples, two of which replicated across populations. Our results indicate that the effects of EREG and TCIRG1 variants on PTB susceptibility, to the extent that they exist, are dependent on gene–gene interactions in West African populations as detected with ViSEN. In addition, epistatic effects are likely to be influenced by inter- and intra-population differences in genetic or environmental context and/or the mycobacterial lineages causing disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. World Health Organization (WHO). Global Tuberculosis Report 2013. WHO: Geneva, 2013, Available from: http://apps.who.int/iris/bitstream/10665/91355/1/9789241564656_eng.pdf.

  2. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C . Tuberculosis. Lancet 2003; 362: 887–899.

    Article  Google Scholar 

  3. Sirugo G, Hennig BJ, Adeyemo AA, Matimba A, Newport MJ, Ibrahim ME et al. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum Genet 2008; 123: 557–598.

    Article  Google Scholar 

  4. Stein CM, Baker AR . Tuberculosis as a complex trait: impact of genetic epidemiological study design. Mamm Genome 2010; 22: 91–99.

    Article  Google Scholar 

  5. Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, Thuong NT et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 2008; 4: e1000034.

    Article  Google Scholar 

  6. Salie M, van der ML, Moller M, Daya M, van der Spuy GD, van Helden PD et al. Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. J Infect Dis 2013; 209: 216–223.

    Article  Google Scholar 

  7. Thye T, Meyer CG . Human genetic variability and susceptibility to pulmonary TB. In: Lange C, Migliori GB, (eds). Tuberculosis European Respiratory Society: Sheffield 2012, pp 38–58.

    Chapter  Google Scholar 

  8. Thuong NT, Hawn TR, Chau TT, Bang ND, Yen NT, Thwaites GE et al. Epiregulin (EREG) variation is associated with susceptibility to tuberculosis. Genes Immun 2012; 13: 275–281.

    Article  CAS  Google Scholar 

  9. Capparelli R, Palumbo D, Iannaccone M, Iannelli D . Human V-ATPase gene can protect or predispose the host to pulmonary tuberculosis. Genes Immun 2009; 10: 641–646.

    Article  CAS  Google Scholar 

  10. Toyoda H, Komurasaki T, Uchida D, Takayama Y, Isobe T, Okuyama T et al. Epiregulin. A novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem 1995; 270: 7495–7500.

    Article  CAS  Google Scholar 

  11. Thuong NT, Dunstan SJ, Chau TT, Thorsson V, Simmons CP, Quyen NT et al. Identification of tuberculosis susceptibility genes with human macrophage gene expression profiles. PLoS Pathog 2008; 4: e1000229.

    Article  Google Scholar 

  12. Nalbandian A, Yan BS, Pichugin A, Bronson RT, Kramnik I . Lung carcinogenesis induced by chronic tuberculosis infection: the experimental model and genetic control. Oncogene 2009; 28: 1928–1938.

    Article  CAS  Google Scholar 

  13. Toei M, Saum R, Forgac M . Regulation and isoform function of the V-ATPases. Biochemistry 2010; 49: 4715–4723.

    Article  CAS  Google Scholar 

  14. Hinton A, Bond S, Forgac M . V-ATPase functions in normal and disease processes. Pflugers Arch 2009; 457: 589–598.

    Article  CAS  Google Scholar 

  15. Heinemann T, Bulwin GC, Randall J, Schnieders B, Sandhoff K, Volk HD et al. Genomic organization of the gene coding for TIRC7, a novel membrane protein essential for T cell activation. Genomics 1999; 57: 398–406.

    Article  CAS  Google Scholar 

  16. Li YP, Chen W, Stashenko P . Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. Biochem Biophys Res Commun 1996; 218: 813–821.

    Article  CAS  Google Scholar 

  17. Scott BB, Chapman CG . The putative 116 kDa osteoclast specific vacuolar proton pump subunit has ubiquitous tissue distribution. Eur J Pharmacol 1998; 346: R3–R4.

    Article  CAS  Google Scholar 

  18. Del Fattore A, Cappariello A, Teti A . Genetics, pathogenesis and complications of osteopetrosis. Bone 2008; 42: 19–29.

    Article  CAS  Google Scholar 

  19. Utku N, Heinemann T, Tullius SG, Bulwin GC, Beinke S, Blumberg RS et al. Prevention of acute allograft rejection by antibody targeting of TIRC7, a novel T cell membrane protein. Immunity 1998; 9: 509–518.

    Article  CAS  Google Scholar 

  20. Singh CR, Moulton RA, Armitige LY, Bidani A, Snuggs M, Dhandayuthapani S et al. Processing and presentation of a mycobacterial antigen 85B epitope by murine macrophages is dependent on the phagosomal acquisition of vacuolar proton ATPase and in situ activation of cathepsin D. J Immunol 2006; 177: 3250–3259.

    Article  CAS  Google Scholar 

  21. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994; 263: 678–681.

    Article  CAS  Google Scholar 

  22. Kolonko M, Geffken AC, Blumer T, Hagens K, Schaible UE, Hagedorn M . WASH-driven actin polymerization is required for efficient mycobacterial phagosome maturation arrest. Cell Microbiol 2013; 16: 232–246.

    Article  Google Scholar 

  23. Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y . Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci USA 2011; 108: 19371–19376.

    Article  CAS  Google Scholar 

  24. Conboy IM, Manoli D, Mhaiskar V, Jones PP . Calcineurin and vacuolar-type H+-ATPase modulate macrophage effector functions. Proc Natl Acad Sci USA 1999; 96: 6324–6329.

    Article  CAS  Google Scholar 

  25. Ryckman KK, Jiang L, Li C, Bartlett J, Haines JL, Williams SM . A prevalence-based association test for case-control studies. Genet Epidemiol 2008; 32: 600–605.

    Article  Google Scholar 

  26. Hu T, Sinnott-Armstrong NA, Kiralis JW, Andrew AS, Karagas MR, Moore JH . Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics 2011; 12: 364.

    Article  CAS  Google Scholar 

  27. Hu T, Chen Y, Kiralis JW, Moore JH . ViSEN: methodology and software for visualization of statistical epistasis networks. Genet Epidemiol 2013; 37: 283–285.

    Article  Google Scholar 

  28. Greene CS, Penrod NM, Williams SM, Moore JH . Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS ONE 2009; 4: e5639.

    Article  Google Scholar 

  29. Coussens AK, Wilkinson RJ, Nikolayevskyy V, Elkington PT, Hanifa Y, Islam K et al. Ethnic variation in inflammatory profile in tuberculosis. PLoS Pathog 2013; 9: e1003468.

    Article  CAS  Google Scholar 

  30. Pareek M, Evans J, Innes J, Smith G, Hingley-Wilson S, Lougheed KE et al. Ethnicity and mycobacterial lineage as determinants of tuberculosis disease phenotype. Thorax 2013; 68: 221–229.

    Article  Google Scholar 

  31. Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA et al. Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS ONE 2011; 6: e20908.

    Article  CAS  Google Scholar 

  32. Olesen R, Wejse C, Velez DR, Bisseye C, Sodemann M, Aaby P et al. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 2007; 8: 456–467.

    Article  CAS  Google Scholar 

  33. Morris GA, Edwards DR, Hill PC, Wejse C, Bisseye C, Olesen R et al. Interleukin 12B (IL12B) genetic variation and pulmonary tuberculosis: a study of cohorts from The Gambia, Guinea-Bissau, United States and Argentina. PLoS ONE 2011; 6: e16656.

    Article  CAS  Google Scholar 

  34. Gustafson P, Gomes VF, Vieira CS, Rabna P, Seng R, Johansson P et al. Tuberculosis in Bissau: incidence and risk factors in an urban community in sub-Saharan Africa. Int J Epidemiol 2004; 33: 163–172.

    Article  Google Scholar 

  35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  36. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  37. StataCorp. Stata Statistical Software. [Release 11]. StataCorp LP: College Station, TX, 2009.

  38. Zamar D, McNeney B, Graham J . elrm: software implementation exact-like inference for logistic regression models. J Statist Softw 2007; 21: 21.

    Article  Google Scholar 

  39. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2013.

  40. Grady BJ, Torstenson E, Dudek SM, Giles J, Sexton D, Ritchie MD . Finding unique filter sets in PLATO: a precursor to efficient interaction analysis in GWAS data. In: Pacific Symp Biocomputing 2010. World Scientific Publishing, pp 315–326.

Download references

Acknowledgements

This work was supported by the Medical Research Council (MRC UK) award G0000690 to GS and by grants from the Danish Medical Research Council, the Danish Society of Respiratory Medicine and the Danish Council of Development Research to CW and LJØ. MJW and SMW were partially supported by NIH Grant P20 GM103534.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S M Williams or G Sirugo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, M., Tacconelli, A., Chen, J. et al. Epiregulin (EREG) and human V-ATPase (TCIRG1): genetic variation, ethnicity and pulmonary tuberculosis susceptibility in Guinea-Bissau and The Gambia. Genes Immun 15, 370–377 (2014). https://doi.org/10.1038/gene.2014.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.28

This article is cited by

Search

Quick links