Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The crystal structure of zebrafish IL-22 reveals an evolutionary, conserved structure highly similar to that of human IL-22

Subjects

Abstract

The class II cytokine family consists of small α-helical signaling proteins including the interleukin-10 (IL-10)/IL-22 family, as well as interferons (IFNs). They regulate the innate immune response and in addition have an important role in protecting epithelial tissues. Teleost fish possess a class II cytokine system surprisingly similar to that of humans, and thus zebrafish offers an attractive model organism for investigating the role of class II cytokines in inflammation. However, the evolution of class II cytokines is critical to understand if we are to take full advantage of zebrafish as a model system. The small size and fast evolution of these cytokines obscure phylogenetic analyses based purely on sequences, but one can overcome this obstacle by using information contained within the structure of those molecules. Here we present the crystal structure of IL-22 from zebrafish (zIL-22) solved at 2.1 Å, which displays a typical class II cytokine architecture. We generated a structure-guided alignment of vertebrate class II cytokines and used it for phylogenetic analysis. Our analysis suggests that IL-22 and IL-26 arose early during the evolution of the IL-10-like cytokines. Thus, we propose an evolutionary scenario of class II cytokines in vertebrates, based on genomic and structural data.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pestka S, Krause CD, Walter MR . Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004; 202: 8–32.

    Article  CAS  PubMed  Google Scholar 

  2. Krause CD, Pestka S . Evolution of the class 2 cytokines and receptors, and discovery of new friends and relatives. Pharmacol Ther 2005; 106: 299–346.

    Article  CAS  PubMed  Google Scholar 

  3. Qi Z, Nie P, Secombes CJ, Zou J . Intron-containing type I and type III IFN coexist in amphibians: refuting the concept that a retroposition event gave rise to type I IFNs. J Immunol 2010; 184: 5038–5046.

    Article  CAS  PubMed  Google Scholar 

  4. Nagem RAP, Colau D, Dumoutier L, Renauld J-C, Ogata C, Polikarpov I . Crystal structure of recombinant human interleukin-22. Structure 2002; 10: 1051–1062.

    Article  CAS  PubMed  Google Scholar 

  5. Zdanov A, Schalk-Hihi C, Gustchina A, Tsang M, Weatherbee J, Wlodawer A . Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure 1995; 3: 591–601.

    Article  CAS  PubMed  Google Scholar 

  6. Chang C, Magracheva E, Kozlov S, Fong S, Tobin G, Kotenko S et al. Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J Biol Chem 2003; 278: 3308–3313.

    Article  CAS  PubMed  Google Scholar 

  7. Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR, Walter MR . Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc Natl Acad Sci USA 2012; 109: 12704–12709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gad HH, Dellgren C, Hamming OJ, Vends S, Paludan SR, Hartmann R . Interferon-lambda is functionally an interferon but structurally related to the interleukin-10 family. J Biol Chem 2009; 284: 20869–20875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ealick S, Cook W, Vijay-Kumar S, Carson M, Nagabhushan T, Trotta P et al. Three-dimensional structure of recombinant human interferon-gamma. Science (80-) 1991; 252: 698–702.

    Article  CAS  Google Scholar 

  10. Walter MR . Structural analysis of IL-10 and type I interferon family members and their complexes with receptor. Adv Protein Chem 2004; 68: 171–222.

    Article  CAS  PubMed  Google Scholar 

  11. Hamming OJ, Lutfalla G, Levraud J-P, Hartmann R . Crystal structure of zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates. J Virol 2011; 85: 8181–8187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Igawa D, Sakai M, Savan R . An unexpected discovery of two interferon gamma-like genes along with interleukin (IL)-22 and -26 from teleost: IL-22 and -26 genes have been described for the first time outside mammals. Mol Immunol 2006; 43: 999–1009.

    Article  CAS  PubMed  Google Scholar 

  13. Zou J, Tafalla C, Truckle J, Secombes CJ . Identification of a second group of type I IFNs in fish sheds light on IFN evolution in vertebrates. J Immunol 2007; 179: 3859–3871.

    Article  CAS  PubMed  Google Scholar 

  14. Levraud J-P, Boudinot P, Colin I, Benmansour A, Peyrieras N, Herbomel P et al. Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system. J Immunol 2007; 178: 4385–4394.

    Article  CAS  PubMed  Google Scholar 

  15. Wang T, Díaz-Rosales P, Martin SaM, Secombes CJ . Cloning of a novel interleukin (IL)-20-like gene in rainbow trout Oncorhynchus mykiss gives an insight into the evolution of the IL-10 family. Dev Comp Immunol 2010; 34: 158–167.

    Article  CAS  PubMed  Google Scholar 

  16. Lutfalla G, Roest Crollius H, Stange-Thomann N, Jaillon O, Mogensen K, Monneron D . Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: the class II cytokine receptors and their ligands in mammals and fish. BMC Genom 2003; 4: 29.

    Article  Google Scholar 

  17. Stein C, Caccamo M, Laird G, Leptin M . Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol 2007; 8: R251.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aggad D, Stein C, Sieger D, Mazel M, Boudinot P, Herbomel P et al. In vivo analysis of Ifn-γ1 and Ifn-γ2 signaling in zebrafish. J Immunol 2010; 185: 6774–6782.

    Article  CAS  PubMed  Google Scholar 

  19. Altmann SM, Mellon MT, Distel DL, Kim CH . Molecular and functional analysis of an interferon gene from the zebrafish, Danio rerio. J Virol 2003; 77: 1992–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stolte EH, Savelkoul HFJ, Wiegertjes G, Flik G, Lidy Verburg-van Kemenade BM . Differential expression of two interferon-gamma genes in common carp (Cyprinus carpio L.). Dev Comp Immunol 2008; 32: 1467–1481.

    Article  CAS  PubMed  Google Scholar 

  21. Robertsen B, Bergan V, Røkenes T, Larsen R, Albuquerque A . Atlantic salmon interferon genes: cloning, sequence analysis, expression, and biological activity. J Interferon Cytokine Res 2003; 23: 601–612.

    Article  CAS  PubMed  Google Scholar 

  22. Aggad D, Mazel M, Boudinot P, Mogensen KE, Hamming OJ, Hartmann R et al. The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains. J Immunol 2009; 183: 3924–3931.

    Article  CAS  PubMed  Google Scholar 

  23. Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC . IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 2000; 1: 488–494.

    Article  CAS  PubMed  Google Scholar 

  24. Dumoutier L, Louahed J, Renauld J-C . Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 2000; 164: 1814–1819.

    Article  CAS  PubMed  Google Scholar 

  25. Wolk K, Sabat R . Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev 2006; 17: 367–380.

    Article  CAS  PubMed  Google Scholar 

  26. Wolk K, Witte E, Witte K, Warszawska K, Sabat R . Biology of interleukin-22. Semin Immunopathol 2010; 32: 17–31.

    Article  CAS  PubMed  Google Scholar 

  27. Wolk K, Witte E, Warszawska K, Schulze-Tanzil G, Witte K, Philipp S et al. The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis. Eur J Immunol 2009; 39: 3570–3581.

    Article  CAS  PubMed  Google Scholar 

  28. Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 2000; 275: 31335–31339.

    Article  CAS  PubMed  Google Scholar 

  29. Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP et al. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 2001; 276: 2725–2732.

    Article  CAS  PubMed  Google Scholar 

  30. Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld J-C . Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 2002; 277: 33676–33682.

    Article  CAS  PubMed  Google Scholar 

  31. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R . IL-22 increases the innate immunity of tissues. Immunity 2004; 21: 241–254.

    Article  CAS  PubMed  Google Scholar 

  32. Wolk K, Witte E, Wallace E, Döcke W-D, Kunz S, Asadullah K et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 36: 1309–1323.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson MS, Feng CG, Barber DL, Yarovinsky F, Cheever AW, Sher A et al. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol 2010; 184: 4378–4390.

    Article  CAS  PubMed  Google Scholar 

  34. Bao W, Jin L, Fu H-J, Shen Y-N, Lu G-X, Mei H et al. Interleukin-22 mediates early host defense against Rhizomucor pusilluscan pathogens. PLoS ONE 2013; 8: e65065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ota N, Wong K, Valdez Pa, Zheng Y, Crellin NK, Diehl L et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol 2011; 12: 941–948.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Y, Valdez Pa, Danilenko DM, Hu Y, Sa SM, Gong Q et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 2011; 54: 900–909.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang F, Shang D, Zhang Y, Tian Y . Interleukin-22 suppresses the growth of A498 renal cell carcinoma cells via regulation of STAT1 pathway. PLoS ONE 2011; 6: e20382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Curd LM, Favors SE, Gregg RK . Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. Clin Exp Immunol 2012; 168: 192–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thompson CL, Plummer SJ, Tucker TC, Casey G, Li L . Interleukin-22 genetic polymorphisms and risk of colon cancer. Cancer Causes Control 2010; 21: 1165–1170.

    Article  PubMed  Google Scholar 

  41. Huber S, Gagliani N, Zenewicz La, Huber FJ, Bosurgi L, Hu B et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 2012; 491: 259–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paget C, Ivanov S, Fontaine J, Renneson J, Blanc F, Pichavant M et al. Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damage. J Biol Chem 2012; 287: 8816–8829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ing WX, Ou MZ, Iu SL, Tao XU, Ang JW, Dong-gang XU . Interleukin-22 protects against acute alcohol-induced hepatotoxicity in mice. Biosci Biotechnol Biochem 2011; 75: 1290–1294.

    Article  Google Scholar 

  44. Missé D, Yssel H, Trabattoni D, Oblet C, Lo Caputo S, Mazzotta F et al. IL-22 participates in an innate anti-HIV-1 host-resistance network through acute-phase protein induction. J Immunol 2007; 178: 407–415.

    Article  PubMed  Google Scholar 

  45. Zhang Y, Cobleigh Ma, Lian J-Q, Huang C-X, Booth CJ, Bai X-F et al. A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology 2011; 141: 1897–1906.

    Article  CAS  PubMed  Google Scholar 

  46. Ivanov S, Renneson J, Fontaine J, Barthelemy A, Paget C, Macho Fernandez E et al. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J Virol 2013; 87: 6911–6924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Belle AB, Van, Heusch M, De, Lemaire MM, Hendrickx E, Warnier G, Fouser LA et al. IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol 2013; 188: 462–469.

  48. Pan H-F, Li X-P, Zheng SG, Ye D-Q . Emerging role of interleukin-22 in autoimmune diseases. Cytokine Growth Factor Rev 2013; 24: 51–57.

    Article  CAS  PubMed  Google Scholar 

  49. Renshaw Sa, Loynes Ca, Trushell DMI, Elworthy S, Ingham PW . Whyte MKB. A transgenic zebrafish model of neutrophilic inflammation. Blood 2006; 108: 3976–3978.

    Article  CAS  PubMed  Google Scholar 

  50. Rendueles O, Ferrières L, Frétaud M, Bégaud E, Herbomel P, Levraud J-P et al. A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS Pathogen 2012; 8: e1002815.

    Article  CAS  Google Scholar 

  51. Wang M, Liang P . Interleukin-24 and its receptors. Immunology 2005; 114: 166–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trivella DBB, Ferreira-Júnior JR, Dumoutier L, Renauld J-C, Polikarpov I . Structure and function of interleukin-22 and other members of the interleukin-10 family. Cell Mol Life Sci 2010; 67: 2909–2935.

    Article  CAS  PubMed  Google Scholar 

  53. Donnelly RP, Sheikh F, Dickensheets H, Savan R, Young Ha, Walter MR . Interleukin-26: an IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev 2010; 21: 393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Monte MM, Zou J, Wang T, Carrington A, Secombes CJ . Cloning, expression analysis and bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-22. Cytokine 2011; 55: 62–73.

    Article  CAS  PubMed  Google Scholar 

  55. Corripio-Miyar Y, Zou J, Richmond H, Secombes CJ . Identification of interleukin-22 in gadoids and examination of its expression level in vaccinated fish. Mol Immunol 2009; 46: 2098–2106.

    Article  CAS  PubMed  Google Scholar 

  56. Kasahara M . The 2R hypothesis: an update. Curr Opin Immunol 2007; 19: 547–552.

    Article  CAS  PubMed  Google Scholar 

  57. Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renauld J-C . Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J 2003; 370: 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones BC, Logsdon NJ, Walter MR . Structure of IL-22 bound to its high affinity IL-22R1 chain. Structure 2009; 16: 1333–1344.

    Article  Google Scholar 

  59. Logsdon NJ, Jones BC, Allman JC, Izotova L, Schwartz B, Pestka S et al. The IL-10R2 binding hot spot on IL-22 is located on the N-terminal helix and is dependent on N-linked glycosylation. J Mol Biol 2004; 342: 503–514.

    Article  CAS  PubMed  Google Scholar 

  60. Wu PW, Li J, Kodangattil SR, Luxenberg DP, Bennett F, Martino M et al. IL-22R, IL-10R2, and IL-22BP binding sites are topologically juxtaposed on adjacent and overlapping surfaces of IL-22. J Mol Biol 2008; 382: 1168–1183.

    Article  CAS  PubMed  Google Scholar 

  61. Bleicher L, de Moura PR, Watanabe L, Colau D, Dumoutier L, Renauld J-C et al. Crystal structure of the IL-22/IL-22R1 complex and its implications for the IL-22 signaling mechanism. FEBS Lett 2008; 582: 2985–2992.

    Article  CAS  PubMed  Google Scholar 

  62. Kabsch W . Xds. Acta Crystallogr D 2010; 66: 125–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 2010; 66: 213–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Emsley P, Cowtan K . Coot: model-building tools for molecular graphics. Acta Crystallogr D 2004; 60: 2126–2132.

    Article  PubMed  Google Scholar 

  65. Krissinel E, Henrick K . Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D 2004; 60: 2256–2268.

    Article  CAS  PubMed  Google Scholar 

  66. Schrodinger LLC. The PyMOL Molecular Graphics System, Version 1.3r1 Schrodinger LLC: Portland, OR, USA, 2010.

  67. Larkin Ma, Blackshields G, Brown NP, Chenna R, McGettigan Pa, McWilliam H et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  68. Waterhouse AM, Procter JB, Martin DMa, Clamp M, Barton GJ . Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25: 1189–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Holm L, Rosenström P . Dali server: conservation mapping in 3D. Nucleic Acids Res 2010; 38: W545–W549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was funded by the Danish Cancer Society (Grant: R20-A927 to RH), the Danish Council for Independent Research, Medical Research (Grant 11-107588 to RH) and the French Agence Nationale de la Recherche (Grant ANR-10-MIDI-009 Zebraflam).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siupka, P., Hamming, O., Frétaud, M. et al. The crystal structure of zebrafish IL-22 reveals an evolutionary, conserved structure highly similar to that of human IL-22. Genes Immun 15, 293–302 (2014). https://doi.org/10.1038/gene.2014.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.18

This article is cited by

Search

Quick links