Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Contribution of increased ISG15, ISGylation and deregulated type I IFN signaling in Usp18 mutant mice during the course of bacterial infections

Abstract

Host genetics has a key role in susceptibility to Salmonella Typhimurium infection. We previously used N-ethyl-N-nitrosourea (ENU) mutagenesis to identify a loss-of-function mutation within the gene ubiquitin-specific peptidase 18 (Usp18Ity9), which confers increased susceptibility to Salmonella Typhimurium. USP18 functions to regulate type I interferon (IFN) signaling and as a protease to remove ISG15 from substrate proteins. Usp18Ity9 mice are susceptible to infection with Salmonella Typhimurium and have increased expression and function of ISG15, but Usp18Ity9 mice lacking Isg15 do not show improved survival with Salmonella challenge. Type I IFN signaling is increased in Usp18Ity9 mice and inhibition of type I IFN signaling is associated with improved survival in mutant mice. Hyperactivation of type I IFN signaling leads to increased IL-10, deregulated expression of autophagy markers and elevated interleukin (IL)-1β and IL-17. Furthermore, Usp18Ity9 mice are more susceptible to infection with Mycobacterium tuberculosis, have increased bacterial load in the lung and spleen, elevated inflammatory cytokines and more severe lung pathology. These findings demonstrate that regulation of type I IFN signaling is the predominant mechanism affecting the susceptibility of Usp18Ity9 mice to Salmonella infection and that hyperactivation of signaling leads to increased IL-10, deregulation of autophagic markers and increased proinflammatory cytokine production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Crump JA, Mintz ED . Global trends in typhoid and paratyphoid fever. Clin Infect Dis 2010; 50: 241–246.

    Article  PubMed  Google Scholar 

  2. Vidal SM, Malo D, Marquis JF, Gros P . Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol 2008; 26: 81–132.

    Article  CAS  PubMed  Google Scholar 

  3. Richer E, Prendergast C, Zhang DE, Qureshi ST, Vidal SM, Malo D . N-ethyl-N-nitrosourea-induced mutation in ubiquitin-specific peptidase 18 causes hyperactivation of IFN-alphabeta signaling and suppresses STAT4-induced IFN-gamma production, resulting in increased susceptibility to Salmonella typhimurium. J Immunol 2010; 185: 3593–3601.

    Article  CAS  PubMed  Google Scholar 

  4. Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG, Fuchs SY et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J 2006; 25: 2358–2367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim KI, Yan M, Malakhova O, Luo JK, Shen MF, Zou W et al. Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling. Mol Cell Biol 2006; 26: 472–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trinchieri G . Type I interferon: friend or foe? J Exp Med 2010; 207: 2053–2063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Decker T, Muller M, Stockinger S . The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol. 2005; 5: 675–687.

    Article  CAS  PubMed  Google Scholar 

  8. Rayamajhi M, Humann J, Penheiter K, Andreasen K, Lenz LL . Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J Exp Med 2010; 207: 327–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dikopoulos N, Bertoletti A, Kroger A, Hauser H, Schirmbeck R, Reimann J . Type I IFN negatively regulates CD8+ T cell responses through IL-10-producing CD4+ T regulatory 1 cells. J Immunol 2005; 174: 99–109.

    Article  CAS  PubMed  Google Scholar 

  10. Brzoza-Lewis KL, Hoth JJ, Hiltbold EM . Type I interferon signaling regulates the composition of inflammatory infiltrates upon infection with Listeria monocytogenes. Cell Immunol 2012; 273: 41–51.

    Article  CAS  PubMed  Google Scholar 

  11. Khan R, Sancho-Shimizu V, Prendergast C, Roy MF, Loredo-Osti JC, Malo D . Refinement of the genetics of the host response to Salmonella infection in MOLF/Ei: regulation of type 1 IFN and TRP3 pathways by Ity2. Genes Immun 2012; 13: 175–183.

    Article  CAS  PubMed  Google Scholar 

  12. Deretic V . Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 2011; 240: 92–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perrin AJ, Jiang X, Birmingham CL, So NS, Brumell JH . Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr Biol 2004; 14: 806–811.

    Article  CAS  PubMed  Google Scholar 

  14. Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH . Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 2006; 281: 11374–11383.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH . The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 2009; 183: 5909–5916.

    Article  CAS  PubMed  Google Scholar 

  16. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011; 333: 228–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F . The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009; 10: 1215–1221.

    Article  CAS  PubMed  Google Scholar 

  18. Harris J . Autophagy and cytokines. Cytokine 2011; 56: 140–144.

    Article  CAS  PubMed  Google Scholar 

  19. Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE . UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem 2002; 277: 9976–9981.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang D, Zhang DE . Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res 2011; 31: 119–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roy MF, Malo D . Genetic regulation of host responses to Salmonella infection in mice. Genes Immun 2002; 3: 381–393.

    Article  CAS  PubMed  Google Scholar 

  22. Sheehan KC, Lai KS, Dunn GP, Bruce AT, Diamond MS, Heutel JD et al. Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J Interferon Cytokine Res 2006; 26: 804–819.

    Article  CAS  PubMed  Google Scholar 

  23. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Forster I et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 2011; 34: 213–223.

    Article  CAS  PubMed  Google Scholar 

  24. Finbloom DS, Winestock KD . IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol 1995; 155: 1079–1090.

    CAS  PubMed  Google Scholar 

  25. Park HJ, Lee SJ, Kim SH, Han J, Bae J, Kim SJ et al. IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway. Mol Immunol 2011; 48: 720–727.

    Article  CAS  PubMed  Google Scholar 

  26. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8: 445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kageyama S, Omori H, Saitoh T, Sone T, Guan JL, Akira S et al. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell 2011; 22: 2290–2300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA et al. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA 2009; 106: 6226–6231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raupach B, Peuschel SK, Monack DM, Zychlinsky A . Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect Immun 2006; 74: 4922–4926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee J, Kim HR, Quinley C, Kim J, Gonzalez-Navajas J, Xavier R et al. Autophagy suppresses interleukin-1beta (IL-1beta) signaling by activation of p62 degradation via lysosomal and proteasomal pathways. J Biol Chem 2012; 287: 4033–4040.

    Article  CAS  PubMed  Google Scholar 

  31. Peral de Castro C, Jones SA, Ni Cheallaigh C, Hearnden CA, Williams L, Winter J et al. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion. J Immunol 2012; 189: 4144–4153.

    Article  CAS  PubMed  Google Scholar 

  32. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH . Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009; 31: 331–341.

    Article  CAS  PubMed  Google Scholar 

  33. Kim KI, Malakhova OA, Hoebe K, Yan M, Beutler B, Zhang DE . Enhanced antibacterial potential in UBP43-deficient mice against Salmonella typhimurium infection by up-regulating type I IFN signaling. J Immunol 2005; 175: 847–854.

    Article  CAS  PubMed  Google Scholar 

  34. Knight E Jr., Cordova B . IFN-induced 15-kDa protein is released from human lymphocytes and monocytes. J Immunol 1991; 146: 2280–2284.

    CAS  PubMed  Google Scholar 

  35. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D et al. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 2012; 337: 1684–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D'Cunha J, Knight E Jr., Haas AL, Truitt RL, Borden EC . Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 1996; 93: 211–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L, Sad S . Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 2012; 13: 954–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adib-Conquy M, Cavaillon JM . Compensatory anti-inflammatory response syndrome. Thromb Haemost 2009; 101: 36–47.

    Article  CAS  PubMed  Google Scholar 

  39. Dokka S, Shi X, Leonard S, Wang L, Castranova V, Rojanasakul Y . Interleukin-10-mediated inhibition of free radical generation in macrophages. Am J Physiol Lung Cell Mol Physiol 2001; 280: L1196–L1202.

    Article  CAS  PubMed  Google Scholar 

  40. Bussolati B, Mariano F, Montrucchio G, Piccoli G, Camussi G . Modulatory effect of interleukin-10 on the production of platelet-activating factor and superoxide anions by human leucocytes. Immunology 1997; 90: 440–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD et al. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1beta production in human macrophages. J Immunol 2011; 187: 2540–2547.

    Article  CAS  PubMed  Google Scholar 

  42. Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P et al. Innate and adaptive interferons suppress IL-1alpha and IL-1beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 2011; 35: 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A et al. Caspase-1 independent IL-1beta production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 2010; 184: 3326–3330.

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Li H, Zhong B, Blonska M, Gorjestani S, Yan M et al. USP18 inhibits NF-kappaB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex. J Exp Med 2013; 210: 1575–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 2012; 13: 255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci USA 2012; 109: E3168–E3176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bradfute SB, Castillo EF, Arko-Mensah J, Chauhan S, Jiang S, Mandell M et al. Autophagy as an immune effector against tuberculosis. Curr Opin Microbiol 2013; 16: 355–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LA et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 2012; 11: 563–575.

    Article  CAS  PubMed  Google Scholar 

  49. Mesquita FS, Thomas M, Sachse M, Santos AJ, Figueira R, Holden DW . The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathogens 2012; 8: e1002743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schroeder N, Henry T, de Chastellier C, Zhao W, Guilhon AA, Gorvel JP et al. The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles. PLoS Pathogens 2010; 6: e1001002.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mizushima N, Yoshimori T, Levine B . Methods in mammalian autophagy research. Cell 2010; 140: 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010; 466: 973–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M, Murray PJ et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res 2005; 25: 694–701.

    Article  CAS  PubMed  Google Scholar 

  54. Teles RM, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science 2013; 339: 1448–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burkart C, Fan JB, Zhang DE . Two independent mechanisms promote expression of an N-terminal truncated USP18 isoform with higher DeISGylation activity in the nucleus. J Biol Chem 2012; 287: 4883–4893.

    Article  CAS  PubMed  Google Scholar 

  56. Kim KI, Giannakopoulos NV, Virgin HW, Zhang DE . Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol Cell Biol 2004; 24: 9592–9600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the technical assistance of Nadia Prud’homme, Patricia D’arcy, Genevieve Perrault, Lei Zhu, Kyoko Yuki and Line Larivière. SMD is the recipient of a fellowship award from the Fonds de la recherche en santé du Québec. This work was supported by a Canadian Institutes of Health Research Team Grant (CTP-87520) to DM and PG, as well as an United States NIH HL091549 to D-EZ. PG is a James McGill Professor and DM is a McGill Dawson Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Malo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauphinee, S., Richer, E., Eva, M. et al. Contribution of increased ISG15, ISGylation and deregulated type I IFN signaling in Usp18 mutant mice during the course of bacterial infections. Genes Immun 15, 282–292 (2014). https://doi.org/10.1038/gene.2014.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.17

This article is cited by

Search

Quick links