Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Worldwide genetic variation at the 3′ untranslated region of the HLA-G gene: balancing selection influencing genetic diversity

Abstract

The HLA-G (human leukocyte antigen-G) molecule plays a pivotal role in immune tolerance by inhibiting different cell subsets involved in both innate and adaptive immunity. Besides its primary function in maintaining the maternal–fetal tolerance, HLA-G has been involved in a wide range of pathological conditions where it can be either favorable or detrimental to the patient, depending on the nature of the pathology. Although several studies have demonstrated the utmost importance of the 3′ untranslated region (3′UTR) in the HLA-G expression profile, limited data exist on the sequence variability of this gene region in human populations. In this study, we characterized the genetic diversity and haplotype structure of the HLA-G 3′UTR by resequencing 444 individuals from three sub-Saharan African populations and retrieving data from the 1000 Genomes project and the literature. A total of 1936 individuals representing 21 worldwide populations were combined and jointly analyzed. Our data revealed a high level of nucleotide diversity, an excess of intermediate frequency variants and an extremely low population differentiation, strongly supporting a history of balancing selection at this locus. The 14-bp insertion/deletion polymorphism was further pointed out as the likely target of selection, emphasizing its potential role in the post-transcriptional regulation of HLA-G expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hviid TV . HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update 2006; 12: 209–232.

    Article  CAS  PubMed  Google Scholar 

  2. Rizzo R, Vercammen M, van de Velde H, Horn PA, Rebmann V . The importance of HLA-G expression in embryos, trophoblast cells, and embryonic stem cells. Cell Mol Life Sci 2011; 68: 341–352.

    Article  CAS  PubMed  Google Scholar 

  3. Larsen MH, Bzorek M, Pass MB, Larsen LG, Nielsen MW, Svendsen SG et al. Human leukocyte antigen-G in the male reproductive system and in seminal plasma. Mol Hum Reprod 2011; 17: 727–738.

    Article  CAS  PubMed  Google Scholar 

  4. Crisa L, McMaster MT, Ishii JK, Fisher SJ, Salomon DR . Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. J Exp Med 1997; 186: 289–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Discorde M, Moreau P, Sabatier P, Legeais JM, Carosella ED . Expression of HLA-G in human cornea, an immune-privileged tissue. Hum Immunol 2003; 64: 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  6. Menier C, Rabreau M, Challier JC, Le Discorde M, Carosella ED, Rouas-Freiss N . Erythroblasts secrete the nonclassical HLA-G molecule from primitive to definitive hematopoiesis. Blood 2004; 104: 3153–3160.

    Article  CAS  PubMed  Google Scholar 

  7. Larsen MH, Hviid TV . Human leukocyte antigen-G polymorphism in relation to expression, function, and disease. Hum Immunol 2009; 70: 1026–1034.

    Article  CAS  PubMed  Google Scholar 

  8. Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P . Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci 2011; 68: 369–395.

    Article  CAS  PubMed  Google Scholar 

  9. Carosella ED . The tolerogenic molecule HLA-G. Immunol Lett 2011; 138: 22–24.

    Article  CAS  PubMed  Google Scholar 

  10. Deschaseaux F, Delgado D, Pistoia V, Giuliani M, Morandi F, Durrbach A . HLA-G in organ transplantation: towards clinical applications. Cell Mol Life Sci 2011; 68: 397–404.

    Article  CAS  PubMed  Google Scholar 

  11. Yie SM, Hu Z . Human leukocyte antigen-G (HLA-G) as a marker for diagnosis, prognosis and tumor immune escape in human malignancies. Histol Histopathol 2011; 26: 409–420.

    CAS  PubMed  Google Scholar 

  12. González A, Rebmann V, LeMaoult J, Horn PA, Carosella ED, Alegre E . The immunosuppressive molecule HLA-G and its clinical implications. Crit Rev Clin Lab Sci 2012; 49: 63–84.

    Article  PubMed  Google Scholar 

  13. Castelli EC, Mendes-Junior CT, Veiga-Castelli LC, Roger M, Moreau P, Donadi EA . A comprehensive study of polymorphic sites along the HLA-G gene: implication for gene regulation and evolution. Mol Biol Evol 2011; 28: 3069–3086.

    Article  CAS  PubMed  Google Scholar 

  14. Tan Z, Shon AM, Ober C . Evidence of balancing selection at the HLA-G promoter region. Hum Mol Genet 2005; 14: 3619–3628.

    Article  CAS  PubMed  Google Scholar 

  15. Hviid TV, Rizzo R, Melchiorri L, Stignani M, Baricordi OR . Polymorphism in the 5' upstream regulatory and 3' untranslated regions of the HLA-G gene in relation to soluble HLA-G and IL-10 expression. Hum Immunol 2006; 67: 53–62.

    Article  CAS  PubMed  Google Scholar 

  16. Alvarez M, Piedade J, Balseiro S, Ribas G, Regateiro F . HLA-G 3'-UTR SNP and 14-bp deletion polymorphisms in Portuguese and Guinea-Bissau populations. Int J Immunogenet 2009; 36: 361–366.

    Article  CAS  PubMed  Google Scholar 

  17. Castelli EC, Mendes-Junior CT, Deghaide NH, de Albuquerque RS, Muniz YC, Simões RT et al. The genetic structure of 3'untranslated region of the HLA-G gene: polymorphisms and haplotypes. Genes Immun 2010; 11: 134–141.

    Article  CAS  PubMed  Google Scholar 

  18. Lucena-Silva N, Monteiro AR, de Albuquerque RS, Gomes RG, Mendes-Junior CT, Castelli EC et al. Haplotype frequencies based on eight polymorphic sites at the 3' untranslated region of the HLA-G gene in individuals from two different geographical regions of Brazil. Tissue Antigens 2012; 79: 272–278.

    Article  CAS  PubMed  Google Scholar 

  19. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 2007; 81: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yie SM, Li LH, Xiao R, Librach CL . A single base-pair mutation in the 3’-untranslated region of HLA-G mRNA is associated with pre-eclampsia. Mol Hum Reprod 2008; 14: 649–653.

    Article  CAS  PubMed  Google Scholar 

  21. Castelli EC, Moreau P, Oya E, Chiromatzo A, Mendes-Junior CT, Veiga-Castelli LC et al. In silico analysis of microRNAS targeting the HLA-G 3' untranslated region alleles and haplotypes. Hum Immunol 2009; 70: 1020–1025.

    Article  CAS  PubMed  Google Scholar 

  22. Svendsen SG, Hantash BM, Zhao L, Faber C, Bzorek M, Nissen MH et al. The expression and functional activity of membrane-bound human leukocyte antigen-G1 are influenced by the 3'-untranslated region. Hum Immunol 2013; 74: 818–827.

    Article  CAS  PubMed  Google Scholar 

  23. Courtin D, Milet J, Sabbagh A, Massaro JD, Castelli EC, Jamonneau V et al. HLA-G 3' UTR-2 haplotype is associated with Human African trypanosomiasis susceptibility. Infect Genet Evol 2013; 17: 1–7.

    Article  CAS  PubMed  Google Scholar 

  24. Garcia A, Milet J, Courtin D, Sabbagh A, Massaro JD, Castelli EC et al. Association of HLA-G 3'UTR polymorphisms with response to malaria infection: a first insight. Infect Genet Evol 2013; 16: 263–269.

    Article  CAS  PubMed  Google Scholar 

  25. Sabbagh A, Courtin D, Milet J, Massaro JD, Castelli EC, Migot-Nabias F et al. Association of HLA-G 3' untranslated region polymorphisms with antibody response against Plasmodium falciparum antigens: preliminary results. Tissue Antigens 2013; 82: 53–58.

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein DB, Chikhi L . Human migrations and population structure: what we know and why it matters. Annu Rev Genomics Hum Genet 2002; 3: 129–152.

    Article  CAS  PubMed  Google Scholar 

  27. Campbell MC, Tishkoff SA . African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 2008; 9: 403–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. The 1000 Genomes Project Consortium Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    Article  PubMed Central  Google Scholar 

  29. Castro MJ, Morales P, Martinez-Laso J, Allende L, Rojo-Amigo R, Gonzalez-Hevilla M et al. Evolution of MHC-G in humans and primates based on three new 3'UT polymorphisms. Hum Immunol 2000; 61: 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  30. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD . Interrogating a high-density SNP map for signatures of natural selection. Genome Res 2002; 12: 1805–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elhaik E . Empirical distributions of FST from large-scale human polymorphism data. PLoS One 2012; 7: e49837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mu XJ, Lu ZJ, Kong Y, Lam HY, Gerstein MB . Analysis of genomic variation in non-coding elements using population-scale sequencing data from the 1000 Genomes Project. Nucleic Acids Res 2011; 39: 7058–7076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maruyama T, Fuerst PA . Population bottlenecks and non-equilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 1985; 111: 675–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A et al. The genetic structure and history of Africans and African Americans. Science 2009; 324: 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Henn BM, Cavalli-Sforza LL, Feldman MW . The great human expansion. Proc Natl Acad Sci USA 2012; 109: 17758–17764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nielsen R . Statistical tests of selective neutrality in the age of genomics. Heredity 2001; 86: 641–647.

    Article  CAS  PubMed  Google Scholar 

  37. Teshima KM, Coop G, Przeworski M . How reliable are empirical genomic scans for selective sweeps? Genome Res 2006; 16: 702–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu F, Keinan A, Chen H, Ferland RJ, Hill RS, Mignault AA et al. Detecting natural selection by empirical comparison to random regions of the genome. Hum Mol Genet 2009; 18: 4853–4867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akey JM . Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res 2009; 19: 711–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laval G, Patin E, Barreiro LB, Quintana-Murci L . Formulating a historical and demographic model of recent human evolution based on resequencing data from noncoding regions. PLoS One 2010; 5: e10284.

    Article  PubMed  PubMed Central  Google Scholar 

  41. McEvoy BP, Powell JE, Goddard ME, Visscher PM . Human population dispersal ‘Out of Africa’ estimated from linkage disequilibrium and allele frequencies of SNPs. Genome Res 2011; 21: 821–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pritchard JK . Whole-genome sequencing data offer insights into human demography. Nat Genet 2011; 43: 923–925.

    Article  CAS  PubMed  Google Scholar 

  43. Pluzhnikov A, Donnelly P . Optimal sequencing strategies for surveying molecular genetic diversity. Genetics 1996; 144: 1247–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Martelli-Palomino G, Pancoto JA, Muniz YCN, Mendes-Junior CT, Castelli EC, Massaro JD et al. Polymorphic sites at the 3’ untranslated region of the HLA-G gene are associated with differential HLA-G soluble levels in the Brazilian and French population. PLoS One 2013; 8: e71742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Larsen MH, Hylenius S, Andersen AM, Hviid TV . The 3'-untranslated region of the HLA-G gene in relation to pre-eclampsia: revisited. Tissue Antigens 2010; 75: 253–261.

    Article  CAS  PubMed  Google Scholar 

  46. O’Brien M, McCarthy T, Jenkins D, Paul P, Dausset J, Carosella ED et al. Altered HLA-G transcription in pre-eclampsia is associated with allele specific inheritance: possible role of the HLA-G gene in susceptibility to the disease. Cell Mol Life Sci 2001; 58: 1943–1949.

    Article  PubMed  Google Scholar 

  47. Hviid TV, Hylenius S, Rorbye C, Nielsen LG . HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 2003; 55: 63–79.

    CAS  PubMed  Google Scholar 

  48. Rousseau P, Le Discorde M, Mouillot G, Marcou C, Carosella ED, Moreau P . The 14-bp Deletion-Insertion polymorphism in the 3’ UT region of the HLA-G gene influences HLA-G mRNA stability. Hum Immunol 2003; 64: 1005–1010.

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez A, Alegre E, Torres MI, Díaz-Lagares A, Lorite P, Palomeque T et al. Evaluation of HLA-G5 plasmatic levels during pregnancy and relationship with the 14-bp polymorphism. Am J Reprod Immunol 2010; 64: 367–374.

    CAS  PubMed  Google Scholar 

  50. Mendes-Junior CT, Castelli EC, Simões RT, Simões AL, Donadi EA . HLA-G 14-bp polymorphism at exon 8 in Amerindian populations from the Brazilian Amazon. Tissue Antigens 2007; 69: 255–260.

    Article  CAS  PubMed  Google Scholar 

  51. Veit TD, Cazarolli J, Salzano FM, Schiengold M, Chies JA . New evidence for balancing selection at the HLA-G locus in South Amerindians. Genet Mol Biol 2012; 35: 919–923.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hviid TV, Rizzo R, Christiansen OB, Melchiorri L, Lindhard A, Baricordi OR . HLA-G and IL-10 in serum in relation to HLA-G genotype and polymorphisms. Immunogenetics 2004; 56: 135–141.

    Article  CAS  PubMed  Google Scholar 

  53. Santos KE, Lima THA, Felício LP, Massaro JD, Palomino GM, Silva ACA et al. Insights on the HLA-G evolutionary history provided by a nearby Alu insertion. Mol Biol Evol 2013; 30: 2423–2434.

    Article  CAS  PubMed  Google Scholar 

  54. Ober C, Rosinsky B, Grimsley C, van der Ven K, Robertson A, Runge A . Population genetic studies of HLA-G: allele frequencies and linkage disequilibrium with HLA-A1. J Reprod Immunol 1996; 32: 111–123.

    Article  CAS  PubMed  Google Scholar 

  55. van der Ven K, Skrablin S, Engels G, Krebs D . HLA-G polymorphisms and allele frequencies in Caucasians. Hum Immunol 1998; 59: 302–312.

    Article  CAS  PubMed  Google Scholar 

  56. Hviid TV, Christiansen OB . Linkage disequilibrium between human leukocyte antigen (HLA) class II and HLA-G—possible implications for human reproduction and autoimmune disease. Hum Immunol 2005; 66: 688–699.

    Article  CAS  PubMed  Google Scholar 

  57. Castelli EC, Mendes-Junior CT, Viana de Camargo JL, Donadi EA . HLA-G polymorphism and transitional cell carcinoma of the bladder in a Brazilian population. Tissue Antigens 2008; 72: 149–157.

    Article  CAS  PubMed  Google Scholar 

  58. Park Y, Park Y, Kim YS, Kwon OJ, Kim HS . Allele frequencies of human leukocyte antigen-G in a Korean population. Int J Immunogenet 2012; 39: 39–45.

    Article  CAS  PubMed  Google Scholar 

  59. Courtin D, Milet J, Jamonneau V, Yeminanga CS, Kumeso VK, Bilengue CM et al. Association between human African trypanosomiasis and the IL6 gene in a Congolese population. Infect Genet Evol 2007; 7: 60–68.

    Article  CAS  PubMed  Google Scholar 

  60. Milet J, Nuel G, Watier L, Courtin D, Slaoui Y, Senghor P et al. Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population. PLoS One 2010; 5: e11616.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Le Port A, Cottrell G, Martin-Prevel Y, Migot-Nabias F, Cot M, Garcia A . First malaria infections in a cohort of infants in Benin: biological, environmental and genetic determinants. Description of the study site, population methods and preliminary results. BMJ Open 2012; 2: e000342.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hill WG, Robertson A . Linkage disequilibrium in finite populations. Theor Appl Genet 1968; 38: 226–231.

    Article  CAS  PubMed  Google Scholar 

  63. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  64. Stephens M, Donnelly P . A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Excoffier L, Smouse PE, Quattro JM . Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992; 131: 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Excoffier L, Laval G, Schneider S . Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 2005; 1: 47–50.

    Article  CAS  Google Scholar 

  67. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR . MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 2010; 34: 816–834.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wright S . The genetical structure of populations. Ann Eug 1951; 15: 323–354.

    Article  CAS  Google Scholar 

  69. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002; 12: 1611–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kelley JL, Madeoy J, Calhoun JC, Swanson W, Akey JM . Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Res 2006; 16: 980–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L . Natural selection has driven population differentiation in modern humans. Nat Genet 2008; 40: 340–345.

    Article  CAS  PubMed  Google Scholar 

  73. Beaumont MA, Nichols RA . Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 1996; 263: 1619–1626.

    Article  Google Scholar 

  74. Tajima F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fu YX, Li WH . Statistical tests of neutrality of mutations. Genetics 1993; 133: 693–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Librado P, Rozas J . DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25: 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  77. Watterson GA . On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975; 7: 256–276.

    Article  CAS  PubMed  Google Scholar 

  78. Woolfe A, Goode DK, Cooke J, Callaway H, Smith S, Snell P et al. CONDOR: a database resource of developmentally associated conserved non-coding elements. BMC Dev Biol 2007; 7: 100.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nei M . Molecular Evolutionary Genetics. Columbia University Press: New York, 1987.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the binational collaborative research program CAPES-COFECUB (Grant 653/09) and by the Spanish National Institute for Bioinformatics (www.inab.org). PL is supported by a PhD fellowship from ‘Acción Estratrégica de Salud, en el Marco del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2008–2011’ from Instituto de Salud Carlos III. We deeply thank Txema Heredia, Angel Carreno and Jordi Rambla for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sabbagh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabbagh, A., Luisi, P., Castelli, E. et al. Worldwide genetic variation at the 3′ untranslated region of the HLA-G gene: balancing selection influencing genetic diversity. Genes Immun 15, 95–106 (2014). https://doi.org/10.1038/gene.2013.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.67

Keywords

This article is cited by

Search

Quick links