Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The MyD88 rs6853 and TIRAP rs8177374 polymorphic sites are associated with resistance to human pulmonary tuberculosis

Abstract

Toll-like receptors recognize several components of Mycobacterium tuberculosis, the main causative agent of tuberculosis. The signaling pathways leading to activation of the immune response require the MyD88 and TIRAP genes. The hypothesis that polymorphic variants of these genes influenced resistance to pulmonary tuberculosis was tested by a case–control study (400 cases and 400 controls). Heterozygosity at the polymorphic sites MyD88 rs6853 (alleles: A, G) or TIRAP rs8177374 (S180L) (alleles: C, T) is associated with resistance to pulmonary tuberculosis (P: 7.8 × 10−8 and 2 × 10−6, respectively). Double heterozygosity confers higher protection levels (P: 10−14 to 2 × 10−16). The logistic regression model displayed that the double homozygous genotype GG/TT predisposes to the disease (odds ratio (OR): 5.78) and the AG/TT genotype combination neutralizes the protective activity exerted by AG (OR: 3.05). The same model showed that the risk of developing the disease increases with age from 31–40 years to 71–80 years (OR: 1.32–13.59).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Doherty TM, Arditi M . TB, or not TB: that is the question—does TLR signaling hold the answer? J Clin Invest 2004; 114: 1699–1703.

    Article  CAS  Google Scholar 

  2. Bonnert T, Garka K, Parnet P, Sonada G, Testa J, Sims J . The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett 1997; 402: 81–84.

    Article  CAS  Google Scholar 

  3. Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 2007; 39: 523–528.

    Article  CAS  Google Scholar 

  4. Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B . Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 2004; 114: 1790–1799.

    Article  CAS  Google Scholar 

  5. Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 2007; 179: 1178–1189.

    Article  CAS  Google Scholar 

  6. Hawn TR, Dunstan SJ, Thwaites G, Simmons CP, Thoung NT, Lan NT et al. A polymorphism in Toll-Interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis 2006; 194: 1127–1134.

    Article  CAS  Google Scholar 

  7. Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, Thoung NT et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 2008; 4: e1000034.

    Article  Google Scholar 

  8. Miao R, Sun Z, Xu F, Shen H . Meta-analysis on the association of TIRAP S180L variant and tuberculosis susceptibility. Tuberculosis 2011; 91: 268–272.

    Article  Google Scholar 

  9. Nejentsev S, Thye T, Szeszko J, Stevens H, Balabanova Y, Chinbuah A et al. Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat Genet; 40: 261–262.

    Article  CAS  Google Scholar 

  10. Sanchez D, Lefebvre C, Rioux J, Garcia L, Barrera L . Evaluation of Toll-like receptor and adaptor molecule polymorphisms for susceptibility to tuberculosis in a Colombian population. Int J Immunogenet 2012; 39: 216–223.

    Article  CAS  Google Scholar 

  11. Leung A . Pulmonary tuberculosis: The essential. Radiology 1999; 210: 307–322.

    Article  CAS  Google Scholar 

  12. Fitzgerald K, Paisson-McDermott E, Bowle A, Jefferies C, Mansell A, Brady G et al. Mal (MyD88-adapter like) is required to Toll-like receptor-4 signal transduction. Nature 2001; 413: 78–83.

    Article  CAS  Google Scholar 

  13. Casanova J, Abel L . Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 2002; 20: 581–620.

    Article  CAS  Google Scholar 

  14. Velez D, Hulme W, Myers J, Weinberg JB, Lévesque MC, Stryiewski LM et al. NOS2A, TLR4, and IFNGR1 interactions influence pulmonary tuberculosis susceptibility in African-Americans. Hum Genet 2009; 126: 643–653.

    Article  CAS  Google Scholar 

  15. Fortune S, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-γ through myeloid differentiation factor 88-dependent and -independent mechanisms. J Immunol 2004; 172: 6272–6280.

    Article  CAS  Google Scholar 

  16. Scanga C, Bafica A, Feng C, Cheever A, Hieny S, Sher A . MyD-88 deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun 2004; 72: 2400–2404.

    Article  CAS  Google Scholar 

  17. Miller E, Ernst J, Anti. TNF . immunotherapy and tuberculosis reactivation: another mechanism revealed. J Clin Invest 2009; 119: 1079–1082.

    Article  CAS  Google Scholar 

  18. Glickman M, Jacobs W Jr. . Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 2001; 104: 477–485.

    Article  CAS  Google Scholar 

  19. Mankia S, Peters J, Kang S, Moore S, Ehrenstein M . Tuberculosis and anti-TNF treatment: experience of a central London hospital. Clin Rheumatol 2011; 30: 399–401.

    Article  Google Scholar 

  20. French M, Lenzo N, John M, Mallal SA, McKinnon EJ, James IR et al. Immune restoration disease after treatment of immunodeficient HIV-infected patients with highly active antiretroviral therapy. HIV Medicine 2001; 1: 107–115.

    Article  Google Scholar 

  21. Anonymous. Freely associating. Nat Genet 1999; 22: 1–2.

    Article  Google Scholar 

  22. Ioannidis J, Ntzani E, Trikalinos T, Contopoulos-Ioannidis D . Replication validity of genetic association studies. Nat Genet 2001; 29: 306–309.

    Article  CAS  Google Scholar 

  23. Nacham M, Crowell S . Estimate of the mutation rate per nucleotide in human. Genetics 2009; 156: 297–304.

    Google Scholar 

  24. McKerman K, Peckam H, Costa L, McLaughlin S, Fu Y, Tsung E et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res 2009; 19: 1527–1541.

    Article  Google Scholar 

  25. Schurr E . Is susceptibility to tuberculosis acquired or inherited? J Intern Med 2007; 261: 106–111.

    Article  CAS  Google Scholar 

  26. McClellan J, King M-C . Genetic heterogeneity in human disease. Cell 2010; 141: 210–217.

    Article  CAS  Google Scholar 

  27. Anonymous. Reducing our irreproducibility. Nature 2013; 496: 398.

    Article  Google Scholar 

  28. Anonymous. Further confirmation needed. Nat Biotech 2012; 30: 806.

    Article  Google Scholar 

  29. Lohmueller K, Celeste R, Malcolm P, Lander E, Hirschhorn J . Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–182.

    Article  CAS  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning vol I Cold Spring Harbor Laboratory, 1989, pp 5–50.

    Google Scholar 

  31. Garret K, Madden L, Hughes G, Phender W . New applications of statistical tools in plant pathology. Phytopathology 2004; 94: 999–1003.

    Article  Google Scholar 

  32. Kumar P, Henikoff S, Ng PC . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.

    Article  CAS  Google Scholar 

  33. Roy A, Kucukural A, Zhang Y . I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5: 725–738.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank patients and their families for participation in the study. We also thank an anonymous reviewer for insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Iannelli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capparelli, R., De Chiara, F., Di Matteo, A. et al. The MyD88 rs6853 and TIRAP rs8177374 polymorphic sites are associated with resistance to human pulmonary tuberculosis. Genes Immun 14, 504–511 (2013). https://doi.org/10.1038/gene.2013.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.48

Keywords

This article is cited by

Search

Quick links