Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic control of murine invariant natural killer T cells maps to multiple type 1 diabetes regions

Abstract

Reduced frequency of invariant natural killer T (iNKT) cells has been indicated as a contributing factor to type 1 diabetes (T1D) development in NOD mice. To further understand the genetic basis of the defect, we generated (NOD × ICR)F2 mice to map genes that control iNKT-cell development. We determined frequencies of thymic and splenic iNKT cells, as well as the ratio of CD4-positive and -negative subsets in the spleens of 209 F2 males. Quantitative trait loci (QTL) analysis revealed five loci that exceed the significant threshold for the frequency of thymic and/or splenic iNKT cells on Chromosomes (Chr) 1, 5, 6, 12 and 17. Three significant loci on Chr 1, 4 and 5 were found for the ratio of CD4-positive and -negative splenic iNKT cells. Comparisons with previously known mouse T1D susceptibility (Idd) loci revealed two significant QTL peak locations, respectively, mapped to Idd regions on Chr 4 and 6. The peak marker location of the significant Chr 12 iNKT QTL maps to within 0.5 Mb of a syntenic human T1D locus. Collectively, our results reveal several novel loci controlling iNKT-cell development and provide additional information for future T1D genetic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bendelac A, Savage PB, Teyton L . The biology of NKT cells. Annu Rev Immunol 2007; 25: 297–336.

    Article  CAS  Google Scholar 

  2. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci USA 2008; 105: 11287–11292.

    Article  CAS  Google Scholar 

  3. Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB et al. Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 2007; 204: 995–1001.

    Article  CAS  Google Scholar 

  4. Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L . CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr Opin Immunol 2008; 20: 358–368.

    Article  CAS  Google Scholar 

  5. Chan AC, Serwecinska L, Cochrane A, Harrison LC, Godfrey DI, Berzins SP . Immune characterization of an individual with an exceptionally high natural killer T cell frequency and her immediate family. Clin Exp Immunol 2009; 156: 238–245.

    Article  CAS  Google Scholar 

  6. Montoya CJ, Pollard D, Martinson J, Kumari K, Wasserfall C, Mulder CB et al. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 2007; 122: 1–14.

    Article  CAS  Google Scholar 

  7. Kis J, Engelmann P, Farkas K, Richman G, Eck S, Lolley J et al. Reduced CD4+ subset and Th1 bias of the human iNKT cells in Type 1 diabetes mellitus. J Leukoc Biol 2007; 81: 654–662.

    Article  CAS  Google Scholar 

  8. Berzins SP, Cochrane AD, Pellicci DG, Smyth MJ, Godfrey DI . Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 2005; 35: 1399–1407.

    Article  CAS  Google Scholar 

  9. Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A . Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 2002; 110: 793–800.

    Article  CAS  Google Scholar 

  10. Rymarchyk SL, Lowenstein H, Mayette J, Foster SR, Damby DE, Howe IW et al. Widespread natural variation in murine natural killer T-cell number and function. Immunology 2008; 125: 331–343.

    Article  CAS  Google Scholar 

  11. Chen YG, Tsaih SW, Serreze DV . Genetic control of murine invariant natural killer T-cell development dynamically differs dependent on the examined tissue type. Genes Immun 2012; 13: 164–174.

    Article  CAS  Google Scholar 

  12. Berzins SP, Smyth MJ, Baxter AG . Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 2011; 11: 131–142.

    Article  CAS  Google Scholar 

  13. Wilson SB, Delovitch TL . Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 2003; 3: 211–222.

    Article  CAS  Google Scholar 

  14. Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y et al. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 2001; 98: 13838–13843.

    Article  CAS  Google Scholar 

  15. Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV et al. The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001; 7: 1052–1056.

    Article  CAS  Google Scholar 

  16. Sharif S, Arreaza GA, Zucker P, Mi QS, Sondhi J, Naidenko OV et al. Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 2001; 7: 1057–1062.

    Article  CAS  Google Scholar 

  17. Wang B, Geng YB, Wang CR . CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 2001; 194: 313–320.

    Article  Google Scholar 

  18. Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K, Strominger JL et al. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci USA 2001; 98: 6777–6782.

    Article  CAS  Google Scholar 

  19. Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A et al. Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med 1998; 188: 1831–1839.

    Article  CAS  Google Scholar 

  20. Hammond KJ, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG . alpha/beta-T cell receptor (TCR)+CD4-CD8- (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 1998; 187: 1047–1056.

    Article  CAS  Google Scholar 

  21. Zekavat G, Mozaffari R, Arias VJ, Rostami SY, Badkerhanian A, Tenner AJ et al. A novel CD93 polymorphism in non-obese diabetic (NOD) and NZB/W F1 mice is linked to a CD4+ iNKT cell deficient state. Immunogenetics 2010; 62: 397–407.

    Article  CAS  Google Scholar 

  22. Ueno A, Wang J, Cheng L, Im JS, Shi Y, Porcelli SA et al. Enhanced early expansion and maturation of semi-invariant NK T cells inhibited autoimmune pathogenesis in congenic nonobese diabetic mice. J Immunol 2008; 181: 6789–6796.

    Article  CAS  Google Scholar 

  23. Fletcher JM, Jordan MA, Snelgrove SL, Slattery RM, Dufour FD, Kyparissoudis K et al. Congenic analysis of the NKT cell control gene Nkt2 implicates the peroxisomal protein Pxmp4. J Immunol 2008; 181: 3400–3412.

    Article  CAS  Google Scholar 

  24. Chen YG, Driver JP, Silveira PA, Serreze DV . Subcongenic analysis of genetic basis for impaired development of invariant NKT cells in NOD mice. Immunogenetics 2007; 59: 705–712.

    Article  CAS  Google Scholar 

  25. Matsuki N, Stanic AK, Embers ME, Van Kaer L, Morel L, Joyce S . Genetic dissection of V alpha 14J alpha 18 natural T cell number and function in autoimmune-prone mice. J Immunol 2003; 170: 5429–5437.

    Article  CAS  Google Scholar 

  26. Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 2003; 171: 2873–2878.

    Article  CAS  Google Scholar 

  27. Jordan MA, Fletcher JM, Jose R, Chowdhury S, Gerlach N, Allison J et al. Role of Slam in NKT cell development revealed by transgenic complementation in NOD mice. J Immunol 2011; 186: 3953–3965.

    Article  CAS  Google Scholar 

  28. Jordan MA, Fletcher JM, Pellicci D, Baxter AG . Slamf1, the NKT cell control gene Nkt1. J Immunol 2007; 178: 1618–1627.

    Article  CAS  Google Scholar 

  29. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 2007; 27: 751–762.

    Article  CAS  Google Scholar 

  30. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 2002; 109: 131–140.

    Article  CAS  Google Scholar 

  31. Wilson SB, Kent SC, Patton KT, Orban T, Jackson RA, Exley M et al. Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature 1998; 391: 177–181.

    Article  CAS  Google Scholar 

  32. Roman-Gonzalez A, Moreno ME, Alfaro JM, Uribe F, Latorre-Sierra G, Rugeles MT et al. Frequency and function of circulating invariant NKT cells in autoimmune diabetes mellitus and thyroid diseases in Colombian patients. Hum Immunol 2009; 70: 262–268.

    Article  CAS  Google Scholar 

  33. Nakamura T, Sonoda KH, Faunce DE, Gumperz J, Yamamura T, Miyake S et al. CD4+ NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immune-privileged site. J Immunol 2003; 171: 1266–1271.

    Article  CAS  Google Scholar 

  34. Roelofs-Haarhuis K, Wu X, Gleichmann E . Oral tolerance to nickel requires CD4+ invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells. J Immunol 2004; 173: 1043–1050.

    Article  CAS  Google Scholar 

  35. Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 2000; 1: 515–520.

    Article  CAS  Google Scholar 

  36. Chen YG, Chen J, Osborne MA, Chapman HD, Besra GS, Porcelli SA et al. CD38 is required for the peripheral survival of immunotolerogenic CD4+ invariant NK T cells in nonobese diabetic mice. J Immunol 2006; 177: 2939–2947.

    Article  CAS  Google Scholar 

  37. Simoni Y, Gautron AS, Beaudoin L, Bui LC, Michel ML, Coumoul X et al. NOD mice contain an elevated frequency of iNKT17 cells that exacerbate diabetes. Eur J Immunol 2011; 41: 3574–3585.

    Article  CAS  Google Scholar 

  38. Leiter EA, Mark eds NOD Mice and Related Strains: Research Applications in Diabetes, AIDS, Cancer and other Diseases. R.G. Lands Company: Austin, TX, USA, 1998.

    Google Scholar 

  39. Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG . The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet 2010; 42: 68–71.

    Article  CAS  Google Scholar 

  40. Serreze DV, Prochazka M, Reifsnyder PC, Bridgett MM, Leiter EH . Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J Exp Med 1994; 180: 1553–1558.

    Article  CAS  Google Scholar 

  41. Ivakine EA, Fox CJ, Paterson AD, Mortin-Toth SM, Canty A, Walton DS et al. Sex-specific effect of insulin-dependent diabetes 4 on regulation of diabetes pathogenesis in the nonobese diabetic mouse. J Immunol 2005; 174: 7129–7140.

    Article  CAS  Google Scholar 

  42. Godfrey DI, Berzins SP . Control points in NKT-cell development. Nat Rev Immunol 2007; 7: 505–518.

    Article  CAS  Google Scholar 

  43. Godfrey DI, Stankovic S, Baxter AG . Raising the NKT cell family. Nat Immunol 2010; 11: 197–206.

    Article  CAS  Google Scholar 

  44. Ziegler AG, Nepom GT . Prediction and pathogenesis in type 1 diabetes. Immunity 2010; 32: 468–478.

    Article  CAS  Google Scholar 

  45. McAleer MA, Reifsnyder P, Palmer SM, Prochazka M, Love JM, Copeman JB et al. Crosses of NOD mice with the related NON strain. A polygenic model for IDDM. Diabetes 1995; 44: 1186–1195.

    Article  CAS  Google Scholar 

  46. Driver JP, Serreze DV, Chen YG . Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2011; 33: 67–87.

    Article  CAS  Google Scholar 

  47. Collaborative Cross Consortium. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 2012; 190: 389–401.

    Article  Google Scholar 

  48. Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA et al. A new standard genetic map for the laboratory mouse. Genetics 2009; 182: 1335–1344.

    Article  CAS  Google Scholar 

  49. Broman KW, Wu H, Sen S, Churchill GA . R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003; 19: 889–890.

    Article  CAS  Google Scholar 

  50. Sen S, Churchill GA . A statistical framework for quantitative trait mapping. Genetics 2001; 159: 371–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wergedal JE, Ackert-Bicknell CL, Tsaih SW, Sheng MH, Li R, Mohan S et al. Femur mechanical properties in the F2 progeny of an NZB/B1NJ x RF/J cross are regulated predominantly by genetic loci that regulate bone geometry. J Bone Miner Res 2006; 21: 1256–1266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr E Leiter and Dr D Serreze at The Jackson Laboratory for critical reading of the manuscript. We are also grateful to the NIH tetramer core facility for providing us CD1d tetramers. This work was supported by the National Institutes of Health grant DK077443 (to Y-G Chen), the American Diabetes Association grant 1-10-BS-26 (to Y-G Chen), and the Children’s Hospital of Wisconsin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-G Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsaih, SW., Khaja, S., Ciecko, A. et al. Genetic control of murine invariant natural killer T cells maps to multiple type 1 diabetes regions. Genes Immun 14, 380–386 (2013). https://doi.org/10.1038/gene.2013.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.32

Keywords

This article is cited by

Search

Quick links