Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of biomarkers for Mycobacterium tuberculosis infection and disease in BCG-vaccinated young children in Southern India

Abstract

Pediatric tuberculosis (TB) often goes undiagnosed because of the lack of reliable diagnostic methods. With the aim of assessing biomarker(s) that can aid in the diagnosis of TB infection and disease, we investigated 746 Indian children with suspected TB. Whole-blood mRNA from 210 children was examined by dual-color Reverse-Transcriptase Multiple Ligation-dependent Probe-Amplification for the expression of 45 genes and a Bio-Plex assay for the expression of cytokines/chemokines in QuantiFERON supernatants. The study shows that transcription of SEC14L1, GUSB, BPI, CCR7 and TGFβ-1 (all P0.05) was downregulated in TB disease compared with uninfected controls, while transcription of RAB33A was downregulated in TB disease compared with both latent TB (P<0.05) and controls (P<0.01). The transcription of CD4, TGFβ-1 (P<0.01) and the expression of IL-2 (P<0.01) and IL-13 (P<0.05) was upregulated in latent TB compared with that in controls. Using the Least Absolute Shrinkage and Selection Operator (lasso) model, RAB33A alone discriminated between TB disease and latent TB (area under the curve (AUC) 77.5%), whereas a combination of RAB33A, CXCL10, SEC14L1, FOXP3 and TNFRSF1A was effective in discriminating between TB disease and controls (AUC 91.7%). A combination of 11 biomarkers predicted latent TB with moderate discriminatory power (AUC 72.2%). In conclusion, RAB33A is a potential biomarker for TB disease, whereas CD4, TGFβ-1 and IL-2, IL-13 may identify latent TB in children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. WHO. Global Tuberculosis Report 2012.

  2. Delespesse G, Yang LP, Ohshima Y, Demeure C, Shu U, Byun DG et al. Maturation of human neonatal CD4+ and CD8+ T lymphocytes into Th1/Th2 effectors. Vaccine 1998; 16: 1415–1419.

    Article  CAS  Google Scholar 

  3. Upham JW, Lee PT, Holt BJ, Heaton T, Prescott SL, Sharp MJ et al. Development of interleukin-12-producing capacity throughout childhood. Infect Immunity 2002; 70: 6583–6588.

    Article  CAS  Google Scholar 

  4. Upham JW, Rate A, Rowe J, Kusel M, Sly PD, Holt PG . Dendritic cell immaturity during infancy restricts the capacity to express vaccine-specific T-cell memory. Infect Immunity 2006; 74: 1106–1112.

    Article  CAS  Google Scholar 

  5. Seth V, Singhal PK, Semwal OP, Kabra SK, Jain Y . Childhood tuberculosis in a referral centre: clinical profile and risk factors. Indian Pediatr 1993; 30: 479–485.

    CAS  PubMed  Google Scholar 

  6. Beyers N, Gie RP, Schaaf HS, Van Zyl S, Talent JM, Nel ED et al. A prospective evaluation of children under the age of 5 years living in the same household as adults with recently diagnosed pulmonary tuberculosis. Int J Tuberc Lung Dis 1997; 1: 38–43.

    CAS  PubMed  Google Scholar 

  7. Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Enarson DA, Beyers N . The spectrum of disease in children treated for tuberculosis in a highly endemic area. Int J Tuberc Lung Dis 2006; 10: 732–738.

    CAS  PubMed  Google Scholar 

  8. Shingadia D, Novelli V . Diagnosis and treatment of tuberculosis in children. Lancet Infect Dis 2003; 3: 624–632.

    Article  Google Scholar 

  9. Machingaidze S, Wiysonge CS, Gonzalez-Angulo Y, Hatherill M, Moyo S, Hanekom W et al. The utility of an interferon gamma release assay for diagnosis of latent tuberculosis infection and disease in children: a systematic review and meta-analysis. Pediatr Infect Dis J 2011; 30: 694–700.

    Article  Google Scholar 

  10. WHO. Strategic and technical advisory group for tuberculosis (STAG-TB). Report of the Tenth Meeting 2010.

  11. WHO. Joint TDR/EC expert consultation on biomarkers in tuberculosis 2008.

  12. Lopez Avalos GG, Prado Montes de Oca E . Classic and new diagnostic approaches to childhood tuberculosis. J Tropical Med 2012; 2012: 818219.

    Article  Google Scholar 

  13. Whittaker E, Gordon A, Kampmann B . Is IP-10 a better biomarker for active and latent tuberculosis in children than IFNgamma? PloS One 2008; 3: e3901.

    Article  Google Scholar 

  14. Kumar NP, Anuradha R, Suresh R, Ganesh R, Shankar J, Kumaraswami V et al. Suppressed type 1, type 2, and type 17 cytokine responses in active tuberculosis in children. Clin Vaccine Immunol 2011; 18: 1856–1864.

    Article  CAS  Google Scholar 

  15. Thomas T, Brighenti S, Andersson J, Sack D, Raqib R . A new potential biomarker for childhood tuberculosis. Thorax 2011; 66: 727–729.

    Article  Google Scholar 

  16. Joosten SA, Goeman JJ, Sutherland JS, Opmeer L, de Boer KG, Jacobsen M et al. Identification of biomarkers for tuberculosis disease using a novel dual-color RT-MLPA assay. Genes Immunity 2012; 13: 71–82.

    Article  CAS  Google Scholar 

  17. Nelson LJ, Wells CD . Global epidemiology of childhood tuberculosis. Int J Tuberc Lung Dis 2004; 8: 636–647.

    CAS  PubMed  Google Scholar 

  18. Swaminathan S, Rekha B . Pediatric tuberculosis: global overview and challenges. Clin Infect Dis 2010; 50 (Suppl 3): S184–S194.

    Article  Google Scholar 

  19. Wallis RS, Pai M, Menzies D, Doherty TM, Walzl G, Perkins MD et al. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 2010; 375: 1920–1937.

    Article  CAS  Google Scholar 

  20. Schimmoller F, Simon I, Pfeffer SR . Rab GTPases, directors of vesicle docking. J Biol Chem 1998; 273: 22161–22164.

    Article  CAS  Google Scholar 

  21. Brumell JH, Scidmore MA . Manipulation of rab GTPase function by intracellular bacterial pathogens. Microbiol Mol Biol Rev 2007; 71: 636–652.

    Article  CAS  Google Scholar 

  22. Doherty M, Wallis RS, Zumla A . Biomarkers for tuberculosis disease status and diagnosis. Curr Opin Pulm Med 2009; 15: 181–187.

    Article  Google Scholar 

  23. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994; 263: 678–681.

    Article  CAS  Google Scholar 

  24. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ et al. Ras-associated small GTPase 33A, a novel T cell factor, is down-regulated in patients with tuberculosis. J Infect Dis 2005; 192: 1211–1218.

    Article  CAS  Google Scholar 

  25. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Molecular Med 2007; 85: 613–621.

    Article  CAS  Google Scholar 

  26. Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 2011; 12: 15–22.

    Article  CAS  Google Scholar 

  27. Hori S, Sakaguchi S . Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect 2004; 6: 745–751.

    Article  CAS  Google Scholar 

  28. Johanns TM, Ertelt JM, Rowe JH, Way SS . Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection. PLoS Pathog 2010; 6: e1001043.

    Article  Google Scholar 

  29. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A . Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 2006; 173: 803–810.

    Article  CAS  Google Scholar 

  30. Wu B, Huang C, Kato-Maeda M, Hopewell PC, Daley CL, Krensky AM et al. Messenger RNA expression of IL-8, FOXP3, and IL-12beta differentiates latent tuberculosis infection from disease. J Immunol 2007; 178: 3688–3694.

    Article  CAS  Google Scholar 

  31. He XY, Xiao L, Chen HB, Hao J, Li J, Wang YJ et al. T regulatory cells and Th1/Th2 cytokines in peripheral blood from tuberculosis patients. Eur J Clin Microbiol Infect Dis 2010; 29: 643–650.

    Article  CAS  Google Scholar 

  32. Burl S, Hill PC, Jeffries DJ, Holland MJ, Fox A, Lugos MD et al. FOXP3 gene expression in a tuberculosis case contact study. Clin Exp Immunol 2007; 149: 117–122.

    Article  CAS  Google Scholar 

  33. Roberts T, Beyers N, Aguirre A, Walzl G . Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta, and interleukin-4 mRNA levels. J Infect Dis 2007; 195: 870–878.

    Article  CAS  Google Scholar 

  34. Toossi Z, Gogate P, Shiratsuchi H, Young T, Ellner JJ . Enhanced production of TGF-beta by blood monocytes from patients with active tuberculosis and presence of TGF-beta in tuberculous granulomatous lung lesions. Journal of immunology 1995; 154: 465–473.

    CAS  Google Scholar 

  35. Olmos S, Stukes S, Ernst JD . Ectopic activation of Mycobacterium tuberculosis-specific CD4+ T cells in lungs of CCR7−/− mice. J Immunol 2010; 184: 895–901.

    Article  CAS  Google Scholar 

  36. Bankaitis VA, Malehorn DE, Emr SD, Greene R . The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J Cell Biol 1989; 108: 1271–1281.

    Article  CAS  Google Scholar 

  37. Juffermans NP, Verbon A, van Deventer SJ, Buurman WA, van Deutekom H, Speelman P et al. Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J Infect Dis 1998; 178: 1839–1842.

    Article  CAS  Google Scholar 

  38. Vishwanath V, Meera R, Puvanakrishnan R, Narayanan PR . Fate of Mycobacterium tuberculosis inside rat peritoneal macrophages in vitro. Mol Cell Biochem 1997; 175: 169–175.

    Article  CAS  Google Scholar 

  39. Ruhwald M, Bjerregaard-Andersen M, Rabna P, Kofoed K, Eugen-Olsen J, Ravn P . CXCL10/IP-10 release is induced by incubation of whole blood from tuberculosis patients with ESAT-6, CFP10 and TB7.7. Microbes Infect 2007; 9: 806–812.

    Article  CAS  Google Scholar 

  40. Ruhwald M, Bjerregaard-Andersen M, Rabna P, Eugen-Olsen J, Ravn P . IP-10, MCP-1, MCP-2, MCP-3, and IL-1RA hold promise as biomarkers for infection with M. tuberculosis in a whole blood based T-cell assay. BMC Res Notes 2009; 2: 19.

    Article  Google Scholar 

  41. Frahm M, Goswami ND, Owzar K, Hecker E, Mosher A, Cadogan E et al. Discriminating between latent and active tuberculosis with multiple biomarker responses. Tuberculosis 2011; 91: 250–256.

    Article  CAS  Google Scholar 

  42. Kim SY, Park MS, Kim YS, Kim SK, Chang J, Lee HJ et al. The responses of multiple cytokines following incubation of whole blood from TB patients, latently infected individuals, and controls with the TB antigens ESAT-6, CFP-10, and TB7.7. Scand J Immunol 2012; 76: 580–586.

    Article  CAS  Google Scholar 

  43. Chandra RK . Nutrition and the immune system: an introduction. Am J Clin Nutr 1997; 66: 460S–463S.

    Article  CAS  Google Scholar 

  44. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010; 466: 973–977.

    Article  CAS  Google Scholar 

  45. Mengatto L, Chiani Y, Imaz MS . Evaluation of rapid alternative methods for drug susceptibility testing in clinical isolates of Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz 2006; 101: 535–542.

    Article  CAS  Google Scholar 

  46. Mathur HC, Saxena S, Bhardwaj RM . Evaluation of Kenneth Jones’ criteria for diagnosis of childhood tuberculosis. Indian J Pediatr 1974; 41: 349–355.

    Article  CAS  Google Scholar 

  47. Hussain R, Kaleem A, Shahid F, Dojki M, Jamil B, Mehmood H et al. Cytokine profiles using whole-blood assays can discriminate between tuberculosis patients and healthy endemic controls in a BCG-vaccinated population. J Immunol Met 2002; 264: 95–108.

    Article  CAS  Google Scholar 

  48. Pokkali S, Das SD . Augmented chemokine levels and chemokine receptor expression on immune cells during pulmonary tuberculosis. Hum Immunol 2009; 70: 110–115.

    Article  CAS  Google Scholar 

  49. Goeman JJ, Van De Geer SA, Van Houwelingen HC . Testing against a high dimensional alternative. J R Stat Soc B 2006; 68: 477–493.

    Article  Google Scholar 

  50. Hastie T, Tibshirani R, Friedman J . The Elements of Statistical Learning 2nd Edn Springer, 2009: 68–78.

    Book  Google Scholar 

  51. Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC . A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 2004; 20: 93–99.

    Article  CAS  Google Scholar 

  52. Friedman J, Hastie T, Tibshirani R . Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Software 2010; 33: 1–22.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Harald G Wiker (University of Bergen) for constructive advice; Aud Eliassen at the sequencing laboratory at Haukeland University Hospital, Bergen, Norway. Diana Mahelai, Geojith George, Sumithra Selvan, Nelson Jesuraj and Naveen Kumar Kellengere at St John’s Research Institute, Bangalore; Lien M Diep (University of Oslo) for technical and statistical assistance. This study is conducted as part of the Indo-Norway research program. This study was supported by the Research Council of Norway (grants 179342, 192534 and 196362), University of Bergen, Aeras USA, and St John’s Research Institute, India.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to H M S Grewal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Contributors Doherty M, Grewal HMS, Hesseling AC, Jacob A, Jahnsen F, Kenneth J, Kurpad AV, Lindtjorn B, Macaden R, Nelson J, Sumithra S, Vaz M, Walker R

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanasekaran, S., Jenum, S., Stavrum, R. et al. Identification of biomarkers for Mycobacterium tuberculosis infection and disease in BCG-vaccinated young children in Southern India. Genes Immun 14, 356–364 (2013). https://doi.org/10.1038/gene.2013.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.26

Keywords

This article is cited by

Search

Quick links