Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HLA and SNP haplotype mapping in the Japanese population

Abstract

The genes that encode the human leukocyte antigen (HLA) class I and II molecules are highly polymorphic and located in the major histocompatibility complex (MHC) region, where there is a high density of immune-related genes. Numerous studies have identified disease susceptibility in this region; however, interpretation of the results is complicated because of the strong linkage disequilibrium (LD) among HLA alleles and single-nucleotide polymorphisms (SNPs). In this study, we evaluated the correlation between the HLA alleles of 6 loci (HLA-A, C, B, DRB1, DQB1 and DPB1) and 6502 SNPs within 8 Mb of the extended MHC region using 92 Japanese subjects to identify SNP single loci or haplotypes that tag HLA alleles. We found a total of 39 HLA alleles that showed strong LD (r20.8) with SNPs, including 11 non-synonymous SNPs in non-HLA genes. In addition, we identified several SNP haplotypes in strong LD (r20.8) with eight HLA alleles, which do not possess tag SNPs. Our detailed list of tag SNPs and haplotypes could be utilized for a better understanding of the results obtained by association studies in the Japanese population and for the characterization of the differences in LD structures between races.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Shiina T, Hosomichi K, Inoko H, Kulski JK . The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet 2009; 54: 15–39.

    Article  CAS  Google Scholar 

  2. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006; 38: 1166–1172.

    Article  CAS  Google Scholar 

  3. Dong RP, Kimura A, Okubo R, Shinagawa H, Tamai H, Nishimura Y et al. HLA-A and DPB1 loci confer susceptibility to Graves' disease. Hum Immunol 1992; 35: 165–172.

    Article  CAS  Google Scholar 

  4. Richeldi L, Sorrentino R, Saltini C . HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. Science 1993; 262: 242–244.

    Article  CAS  Google Scholar 

  5. Horiki T, Inoko H, Moriuchi J, Ichikawa Y, Arimori S . Combinations of HLA-DPB1 and HLA-DQB1 alleles determine susceptibility to early-onset myasthenia gravis in Japan. Autoimmunity 1994; 19: 49–54.

    Article  CAS  Google Scholar 

  6. Hori T, Kamikawaji N, Kimura A, Sone T, Komiyama N, Komiyama S et al. Japanese cedar pollinosis and HLA-DP5. Tissue Antigens 1996; 47: 485–491.

    Article  CAS  Google Scholar 

  7. Ito H, Yamasaki K, Kawano Y, Horiuchi I, Yun C, Nishimura Y et al. HLA-DP-associated susceptibility to the optico-spinal form of multiple sclerosis in the Japanese. Tissue Antigens 1998; 52: 179–182.

    Article  CAS  Google Scholar 

  8. Lv N, Dang A, Wang Z, Zheng D, Liu G . Association of susceptibility to Takayasu arteritis in Chinese Han patients with HLA-DPB1. Hum Immunol 2011; 72: 893–896.

    Article  CAS  Google Scholar 

  9. Ivansson EL, Juko-Pecirep I, Erlich HA, Gyllensten UB . Pathway-based analysis of genetic susceptibility to cervical cancer in situ: HLA-DPB1 affects risk in Swedish women. Genes Immun 2011; 12: 605–614.

    Article  CAS  Google Scholar 

  10. Saito S, Ota S, Yamada E, Inoko H, Ota M . Allele frequencies and haplotypic associations defined by allelic DNA typing at HLA class I and class II loci in the Japanese population. Tissue Antigens 2000; 56: 522–529.

    Article  CAS  Google Scholar 

  11. Asano K, Matsushita T, Umeno J, Hosono N, Takahashi A, Kawaguchi T et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet 2009; 41: 1325–1329.

    Article  CAS  Google Scholar 

  12. Takeuchi F, Yokota M, Yamamoto K, Nakashima E, Katsuya T, Asano H et al. Genome-wide association study of coronary artery disease in the Japanese. Eur J Hum Genet 2012; 20: 333–340.

    Article  CAS  Google Scholar 

  13. Noguchi E, Sakamoto H, Hirota T, Ochiai K, Imoto Y, Sakashita M et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet 2011; 7: e1002170.

    Article  CAS  Google Scholar 

  14. Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM et al. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat Genet 2011; 43: 897–901.

    Article  CAS  Google Scholar 

  15. Aizawa H, Kinouchi Y, Negoro K, Nomura E, Imai G, Takahashi S et al. HLA-B is the best candidate of susceptibility genes in HLA for Japanese ulcerative colitis. Tissue Antigens 2009; 73: 569–574.

    Article  CAS  Google Scholar 

  16. Yoshida M, Kimura A, Katsuragi K, Numano F, Sasazuki T . DNA typing of HLA-B gene in Takayasu's arteritis. Tissue Antigens 1993; 42: 87–90.

    Article  CAS  Google Scholar 

  17. Elomaa O, Majuri I, Suomela S, Asumalahti K, Jiao H, Mirzaei Z et al. Transgenic mouse models support HCR as an effector gene in the PSORS1 locus. Hum Mol Genet 2004; 13: 1551–1561.

    Article  CAS  Google Scholar 

  18. Yates VM, Watkinson G, Kelman A . Further evidence for an association between psoriasis, Crohn's disease and ulcerative colitis. Br J Dermatol 1982; 106: 323–330.

    Article  CAS  Google Scholar 

  19. Hashimoto M, Nakamura N, Obayashi H, Kimura F, Moriwaki A, Hasegawa G et al. Genetic contribution of the BAT2 gene microsatellite polymorphism to the age-at-onset of insulin-dependent diabetes mellitus. Hum Genet 1999; 105: 197–199.

    Article  CAS  Google Scholar 

  20. Spies T, Blanck G, Bresnahan M, Sands J, Strominger JL . A new cluster of genes within the human major histocompatibility complex. Science 1989; 243: 214–217.

    Article  CAS  Google Scholar 

  21. Iris FJ, Bougueleret L, Prieur S, Caterina D, Primas G, Perrot V et al. Dense Alu clustering and a potential new member of the NF kappa B family within a 90 kilobase HLA class III segment. Nat Genet 1993; 3: 137–145.

    Article  CAS  Google Scholar 

  22. Iwakawa M, Goto M, Noda S, Sagara M, Yamada S, Yamamoto N et al. DNA repair capacity measured by high throughput alkaline comet assays in EBV-transformed cell lines and peripheral blood cells from cancer patients and healthy volunteers. Mutat Res 2005; 588: 1–6.

    Article  CAS  Google Scholar 

  23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  24. R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011, (http://www.R-project.org).

  25. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  Google Scholar 

  26. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  27. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004; 32 (Database issue): D493–D496.

    Article  CAS  Google Scholar 

  28. Takahashi M, Yasunami M, Kubota S, Tamai H, Kimura A . HLA-DPB1*0202 is associated with a predictor of good prognosis of Graves’ disease in the Japanese. Hum Immunol 2006; 67: 47–52.

    Article  CAS  Google Scholar 

  29. Meguro A, Inoko H, Ota M, Katsuyama Y, Oka A, Okada E et al. Genetics of Behcet disease inside and outside the MHC. Ann Rheum Dis 2010; 69: 747–754.

    Article  CAS  Google Scholar 

  30. Matsuki K, Juji T, Tokunaga K, Takamizawa M, Maeda H, Soda M et al. HLA antigens in Japanese patients with myasthenia gravis. J Clin Invest 1990; 86: 392–399.

    Article  CAS  Google Scholar 

  31. Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet 2010; 42: 599–603.

    Article  CAS  Google Scholar 

  32. Chantarangsu S, Mushiroda T, Mahasirimongkol S, Kiertiburanakul S, Sungkanuparph S, Manosuthi W et al. Genome-wide association study identifies variations in 6p21.3 associated with nevirapine-induced rash. Clin Infect Dis 2011; 53: 341–348.

    Article  CAS  Google Scholar 

  33. International HIV Controllers Study; Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 2010; 330: 1551–1557.

    Article  Google Scholar 

  34. Conde L, Halperin E, Akers NK, Brown KM, Smedby KE, Rothman N et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet 2010; 42: 661–664.

    Article  CAS  Google Scholar 

  35. Genin E, Schumacher M, Roujeau JC, Naldi L, Liss Y, Kazma R et al. Genome-wide association study of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in Europe. Orphanet J Rare Dis 2011; 6: 52.

    Article  Google Scholar 

  36. Fellay J, Ge D, Shianna KV, Colombo S, Ledergerber B, Cirulli ET et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet 2009; 5: e1000791.

    Article  Google Scholar 

  37. Hirschfield GM, Liu X, Xu C, Lu Y, Xie G, Lu Y et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 2009; 360: 2544–2555.

    Article  CAS  Google Scholar 

  38. Behrens EM, Finkel TH, Bradfield JP, Kim CE, Linton L, Casalunovo T et al. Association of the TRAF1-C5 locus on chromosome 9 with juvenile idiopathic arthritis. Arthritis Rheum 2008; 58: 2206–2207.

    Article  Google Scholar 

  39. Chung SA, Taylor KE, Graham RR, Nititham J, Lee AT, Ortmann WA et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet 2011; 7: e1001323.

    Article  CAS  Google Scholar 

  40. Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, Dragomirescu L et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 2011; 364: 616–626.

    Article  CAS  Google Scholar 

  41. Ferreira RC, Pan-Hammarstrom Q, Graham RR, Gateva V, Fontan G, Lee AT et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet 2010; 42: 777–780.

    Article  CAS  Google Scholar 

  42. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010; 42: 295–302.

    Article  CAS  Google Scholar 

  43. van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye M et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 2007; 39: 827–829.

    Article  CAS  Google Scholar 

  44. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008; 358: 900–909.

    Article  CAS  Google Scholar 

  45. Eleftherohorinou H, Hoggart CJ, Wright VJ, Levin M, Coin LJ . Pathway-driven gene stability selection of two rheumatoid arthritis GWAS identifies and validates new susceptibility genes in receptor mediated signalling pathways. Hum Mol Genet 2011; 20: 3494–3506.

    Article  CAS  Google Scholar 

  46. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, Teruel M et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 2011; 7: e1002178.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI (22133003) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Yamamoto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitajima, H., Sonoda, M. & Yamamoto, K. HLA and SNP haplotype mapping in the Japanese population. Genes Immun 13, 543–548 (2012). https://doi.org/10.1038/gene.2012.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.35

Keywords

This article is cited by

Search

Quick links