Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human B-cell ontogeny in humanized NOD/SCID γcnull mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire

Abstract

Characterization of the human antibody (Ab) repertoire in mouse models of the human immune system is essential to establish their relevance in translational studies. Single human B cells were sorted from bone marrow and periphery of humanized NOD/SCID γcnull (hNSG) mice at 8–10 months post engraftment with human cord blood-derived CD34+ stem cells. Human IG variable heavy (VH) and kappa (Vκ) genes were amplified, cognate VH–Vκ gene-pairs assembled as single-chain variable fragment-Fc Abs (scFvFcs) and functional studies were performed. Although overall distribution of VH genes approximated the normal human Ab repertoire, analysis of the VH-third complementarity-determining regions in the mature B-cell subset demonstrated an increase in length and positive charges, suggesting autoimmune characteristics. Additionally, >70% of Vκ sequences utilized Vκ4-1, a germline gene associated with autoimmunity. The mature B-cell subset-derived scFvFcs displayed the highest frequency of autoreactivity and polyspecificity, suggesting defects in checkpoint control mechanisms. Furthermore, these scFvFcs demonstrated binding to recombinant HIV envelope corroborating previous observations of poly/autoreactivity in anti-HIVgp140 Abs. These data lend support to the hypothesis that anti-HIV broadly neutralizing antibodies may be derived from auto/polyspecific Abs that escaped immune elimination and that the hNSG mouse could provide a new experimental platform for studying the origin of anti-HIV-neutralizing Ab responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pietzsch J, Scheid JF, Mouquet H, Klein F, Seaman MS, Jankovic M et al. Human anti-HIV-neutralizing antibodies frequently target a conserved epitope essential for viral fitness. J Exp Med 2010; 207: 1995–2002.

    Article  CAS  Google Scholar 

  2. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011; 477: 466–470.

    Article  CAS  Google Scholar 

  3. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010; 329: 856–861.

    Article  CAS  Google Scholar 

  4. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 2011; 333: 1593–1602.

    Article  CAS  Google Scholar 

  5. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 2011; 333: 850–856.

    Article  CAS  Google Scholar 

  6. Dimitrov JD, Kazatchkine MD, Kaveri SV, Lacroix-Desmazes S . ‘Rational vaccine design’ for HIV should take into account the adaptive potential of polyreactive antibodies. PLoS pathogens 2011; 7: e1002095.

    Article  CAS  Google Scholar 

  7. Manz MG, Di Santo JP . Renaissance for mouse models of human hematopoiesis and immunobiology. Nat Immunol 2009; 10: 1039–1042.

    Article  CAS  Google Scholar 

  8. Shultz LD, Ishikawa F, Greiner DL . Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118–130.

    Article  CAS  Google Scholar 

  9. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    Article  CAS  Google Scholar 

  10. Schmidt MR, Appel MC, Giassi LJ, Greiner DL, Shultz LD, Woodland RT . Human BLyS facilitates engraftment of human PBL derived B cells in immunodeficient mice. PloS one 2008; 3: e3192.

    Article  Google Scholar 

  11. Huntington ND, Alves NL, Legrand N, Lim A, Strick-Marchand H, Mention JJ et al. IL-15 transpresentation promotes both human T-cell reconstitution and T-cell-dependent antibody responses in vivo. Proc Natl Acad Sci USA 2011; 108: 6217–6222.

    Article  CAS  Google Scholar 

  12. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA . Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 2011; 32: 321–327.

    Article  CAS  Google Scholar 

  13. Becker PD, Legrand N, van Geelen CM, Noerder M, Huntington ND, Lim A et al. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated ‘human immune system’ mice. PloS one 2010; 5: e13137.

    Article  Google Scholar 

  14. Marodon G, Desjardins D, Mercey L, Baillou C, Parent P, Manuel M et al. High diversity of the immune repertoire in humanized NOD.SCID.gamma c−/− mice. Eur J Immunol 2009; 39: 2136–2145.

    Article  CAS  Google Scholar 

  15. Kolar GR, Yokota T, Rossi MI, Nath SK, Capra JD . Human fetal, cord blood, and adult lymphocyte progenitors have similar potential for generating B cells with a diverse immunoglobulin repertoire. Blood 2004; 104: 2981–2987.

    Article  CAS  Google Scholar 

  16. Rossi MI, Medina KL, Garrett K, Kolar G, Comp PC, Shultz LD et al. Relatively normal human lymphopoiesis but rapid turnover of newly formed B cells in transplanted nonobese diabetic/SCID mice. J Immunol 2001; 167: 3033–3042.

    Article  CAS  Google Scholar 

  17. Mouquet H, Nussenzweig MC . Polyreactive antibodies in adaptive immune responses to viruses. Cell Mol Life Sci 2012; 69: 1435–1445.

    Article  CAS  Google Scholar 

  18. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC . Predominant autoantibody production by early human B cell precursors. Science 2003; 301: 1374–1377.

    Article  CAS  Google Scholar 

  19. Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, Shukair S et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 2010; 467: 591–595.

    Article  CAS  Google Scholar 

  20. Haynes BF, Moody MA, Verkoczy L, Kelsoe G, Alam SM . Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Hum Antibodies 2005; 14: 59–67.

    Article  Google Scholar 

  21. Schettino EW, Chai SK, Kasaian MT, Schroeder HW, Casali P . VHDJH gene sequences and antigen reactivity of monoclonal antibodies produced by human B-1 cells: evidence for somatic selection. J Immunol 1997; 158: 2477–2489.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Agematsu K, Hokibara S, Nagumo H, Komiyama A . CD27: a memory B-cell marker. Immunol Today 2000; 21: 204–206.

    Article  CAS  Google Scholar 

  23. Brezinschek HP, Brezinschek RI, Lipsky PE . Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol 1995; 155: 190–202.

    CAS  PubMed  Google Scholar 

  24. Brezinschek HP, Foster SJ, Brezinschek RI, Dorner T, Domiati-Saad R, Lipsky PE . Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(−)/IgM+ B cells. J Clin Invest 1997; 99: 2488–2501.

    Article  CAS  Google Scholar 

  25. Schroeder HW . Similarity and divergence in the development and expression of the mouse and human antibody repertoires. Dev Comp Immunol 2006; 30: 119–135.

    Article  CAS  Google Scholar 

  26. Zemlin M, Klinger M, Link J, Zemlin C, Bauer K, Engler JA et al. Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J Mol Biol 2003; 334: 733–749.

    Article  CAS  Google Scholar 

  27. Chen C, Nagy Z, Prak EL, Weigert M . Immunoglobulin heavy chain gene replacement: a mechanism of receptor editing. Immunity 1995; 3: 747–755.

    Article  CAS  Google Scholar 

  28. Longo NS, Grundy GJ, Lee J, Gellert M, Lipsky PE . An activation-induced cytidine deaminase-independent mechanism of secondary VH gene rearrangement in preimmune human B cells. J Immunol 2008; 181: 7825–7834.

    Article  CAS  Google Scholar 

  29. Zhang Z . VH replacement in mice and humans. Trends Immunol 2007; 28: 132–137.

    Article  Google Scholar 

  30. Zhang Z, Zemlin M, Wang YH, Munfus D, Huye LE, Findley HW et al. Contribution of Vh gene replacement to the primary B cell repertoire. Immunity 2003; 19: 21–31.

    Article  Google Scholar 

  31. Meffre E, Schaefer A, Wardemann H, Wilson P, Davis E, Nussenzweig MC . Surrogate light chain expressing human peripheral B cells produce self-reactive antibodies. J Exp Med 2004; 199: 145–150.

    Article  CAS  Google Scholar 

  32. Suzuki I, Milner EC, Glas AM, Hufnagle WO, Rao SP, Pfister L et al. Immunoglobulin heavy chain variable region gene usage in bone marrow transplant recipients: lack of somatic mutation indicates a maturational arrest. Blood 1996; 87: 1873–1880.

    CAS  PubMed  Google Scholar 

  33. Manz RA, Hauser AE, Hiepe F, Radbruch A . Maintenance of serum antibody levels. Annu Rev Immunol 2005; 23: 367–386.

    Article  CAS  Google Scholar 

  34. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999; 286: 2156–2159.

    Article  CAS  Google Scholar 

  35. Alam SM, McAdams M, Boren D, Rak M, Scearce RM, Gao F et al. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J Immunol 2007; 178: 4424–4435.

    Article  CAS  Google Scholar 

  36. Haynes BF, Fleming J, Clair EW, Katinger H, Stiegler G, Kunert R et al. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 2005; 308: 1906–1908.

    Article  CAS  Google Scholar 

  37. Meffre E, Salmon JE . Autoantibody selection and production in early human life. J Clin Invest 2007; 117: 598–601.

    Article  CAS  Google Scholar 

  38. Biswas S, Chang H, Sarkis PT, Fikrig E, Zhu Q, Marasco WA . Humoral immune responses in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely mediated via human CD5(+) B cells. Immunology 2011; 134: 419–433.

    Article  CAS  Google Scholar 

  39. Matsumura T, Kametani Y, Ando K, Hirano Y, Katano I, Ito R et al. Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/gammac(null) (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol 2003; 31: 789–797.

    Article  Google Scholar 

  40. Mackenzie LE, Mageed RA, Youinou PY, Yuksel B, Jefferis R, Lydyard PM . Repertoire of CD5+ and CD5- cord blood B cells: specificity and expression of VH I and VH III associated idiotopes. Clin Exp Immunol 1992; 88: 107–111.

    Article  CAS  Google Scholar 

  41. Paavonen T, Quartey-Papafio R, Delves PJ, Mackenzie L, Lund T, Youinou P et al. CD5 mRNA expression and auto-antibody production in early human B cells immortalized by EBV. Scand J Immunol 1990; 31: 269–274.

    Article  CAS  Google Scholar 

  42. Lydyard PM, Quartey-Papafio R, Broker B, Mackenzie L, Jouquan J, Blaschek MA et al. The antibody repertoire of early human B cells. I. High frequency of autoreactivity and polyreactivity. Scand J Immunol 1990; 31: 33–43.

    Article  CAS  Google Scholar 

  43. Lydyard PM, Quartey-Papafio RP, Broker BM, MacKenzie L, Hay FC, Youinou PY et al. The antibody repertoire of early human B cells. III. Expression of cross-reactive idiotopes characteristic of certain rheumatoid factors and identifying V kappa III, VHI, and VHIII gene family products. Scand J Immunol 1990; 32: 709–716.

    Article  CAS  Google Scholar 

  44. Schroeder HW, Mortari F, Shiokawa S, Kirkham PM, Elgavish RA, Bertrand FE . Developmental regulation of the human antibody repertoire. Ann NY Acad Sci 1995; 764: 242–260.

    Article  CAS  Google Scholar 

  45. Prabakaran P, Chen W, Singarayan MG, Stewart CC, Streaker E, Feng Y et al. Expressed antibody repertoires in human cord blood cells: 454 sequencing and IMGT/HighV-QUEST analysis of germline gene usage, junctional diversity, and somatic mutations. Immunogenetics 2012; 64: 337–350.

    Article  CAS  Google Scholar 

  46. Coutinho A, Kazatchkine MD, Avrameas S . Natural autoantibodies. Curr Opin Immunol 1995; 7: 812–818.

    Article  CAS  Google Scholar 

  47. Tiller T, Tsuiji M, Yurasov S, Velinzon K, Nussenzweig MC, Wardemann H . Autoreactivity in human IgG+ memory B cells. Immunity 2007; 26: 205–213.

    Article  CAS  Google Scholar 

  48. Wardemann H, Hammersen J, Nussenzweig MC . Human autoantibody silencing by immunoglobulin light chains. J Exp Med 2004; 200: 191–199.

    Article  CAS  Google Scholar 

  49. Baumgarth N . The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2011; 11: 34–46.

    Article  CAS  Google Scholar 

  50. Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR . Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest 2007; 117: 712–718.

    Article  CAS  Google Scholar 

  51. Haynes BF, Nicely NI, Alam SM . HIV-1 autoreactive antibodies: are they good or bad for HIV-1 prevention? Nat Struct Mol Biol 2010; 17: 543–545.

    Article  CAS  Google Scholar 

  52. Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H . Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 2008; 329: 112–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Animal Research Facility at Dana-Farber Cancer Institute (DFCI) for excellent maintenance and mice handling and Michael Waring at the Flow Cytometry core facility at Ragon Institute, Massachusetts General Hospital, Charlestown, MA, USA, for assistance with single B-cell sorting. Biostatistical computations performed by Amany Awad and the DFCI Biostatistical Core service (Sandra Lee and Yang Feng), technical guidance from Islay Campbell, ForteBio and assistance from Raymond Moniz of the Marasco Laboratory with the preparation of figures are appreciated. The HIV envelope reactive monoclonal antibodies (4E10 from Hermann Katinger and b12 from Dennis Burton) were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH (Germantown, MD, USA). This work was partially supported by NIH grants R21 AI091557 and UO1 AI0070343 to WAM Financial support provided by the National Foundation for Cancer Research to the Center for Therapeutic Antibody Engineering at DFCI (NFCR-CTAE) is acknowledged. Research support by the Center For AIDS Research at Harvard University (CFAR-HU) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W A Marasco.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, H., Biswas, S., Tallarico, A. et al. Human B-cell ontogeny in humanized NOD/SCID γcnull mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire. Genes Immun 13, 399–410 (2012). https://doi.org/10.1038/gene.2012.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.16

Keywords

This article is cited by

Search

Quick links