Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Contribution of transcript stability to a conserved procyanidin-induced cytokine response in γδ T cells

Abstract

γδ T cells function in innate and adaptive immunity and are primed for secondary responses by procyanidin components of unripe apple peel (APP). In this study, we investigate the effects of APP and purified procyanidins on γδ T-cell gene expression. A microarray analysis was performed on bovine γδ T cells treated with APP; increases in transcripts encoding granulocyte-monocyte colony stimulating factor (GM-CSF), IL-8 and IL-17, but not markers of TCR stimulation such as IFNγ, were observed. Key responses were confirmed in human, mouse and bovine cells by reverse transcription-PCR and/or ELISA, indicating a conserved response to procyanidins. In vivo relevance of the cytokine response was shown in mice following intraperitoneal injection of APP, which induced production of CXCL1/KC and resulted in neutrophil influx to the blood and peritoneum. In the human T-cell line, MOLT-14, GM-CSF and IL-8 transcripts were increased and stabilized in cells treated with crude APP or purified procyanidins. The ERK1/2 MAPK pathway was activated in APP-treated cells, and necessary for transcript stabilization. Our data describe a unique γδ T-cell inflammatory response during procyanidin treatment and suggest that transcript stability mechanisms could account, at least in part, for the priming phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Holtmeier W, Kabelitz D . Gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy 2005; 86: 151–183.

    Article  CAS  Google Scholar 

  2. Sicard H, Ingoure S, Luciani B, Serraz C, Fournié JJ, Bonneville M et al. In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 2005; 175: 5471–5480.

    Article  CAS  Google Scholar 

  3. Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL et al. Nonpeptide ligands for human gamma delta T cells. Proc Natl Acad Sci USA 1994; 91: 8175–8179.

    Article  CAS  Google Scholar 

  4. Bukowski JF, Morita CT, Brenner MB . Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 1999; 11: 57–65.

    Article  CAS  Google Scholar 

  5. Brandes M, Willimann K, Moser B . Professional antigen-presentation function by human gammadelta T Cells. Science 2005; 309: 264–268.

    Article  CAS  Google Scholar 

  6. Collins RA, Werling D, Duggan SE, Bland AP, Parsons KR, Howard CJ . Gammadelta T cells present antigen to CD4+ alphabeta T cells. J Leukoc Biol 1998; 63: 707–714.

    Article  CAS  Google Scholar 

  7. Graff JC, Jutila MA . Differential regulation of CD11b on gammadelta T cells and monocytes in response to unripe apple polyphenols. J Leukoc Biol 2007; 82: 603–607.

    Article  CAS  Google Scholar 

  8. Holderness J, Jackiw L, Kimmel E, Kerns H, Radke M, Hedges JF et al. Select plant tannins induce IL-2Ralpha up-regulation and augment cell division in gammadelta T cells. J Immunol 2007; 179: 6468–6478.

    Article  CAS  Google Scholar 

  9. Jutila MA, Holderness J, Graff JC, Hedges JF . Antigen-independent priming: a transitional response of bovine gammadelta T-cells to infection. Anim Health Res Rev 2008; 9: 47–57.

    Article  Google Scholar 

  10. Holderness J, Hedges JF, Daughenbaugh K, Kimmel E, Graff J, Freedman B et al. Response of gammadelta T Cells to plant-derived tannins. Crit Rev Immunol 2008; 28: 377–402.

    Article  CAS  Google Scholar 

  11. Akiyama H, Sato Y, Watanabe T, Nagaoka MH, Yoshioka Y, Shoji T et al. Dietary unripe apple polyphenol inhibits the development of food allergies in murine models. FEBS Lett 2005; 579: 4485–4491.

    Article  CAS  Google Scholar 

  12. Hedges JF, Lubick KJ, Jutila MA . Gamma delta T cells respond directly to pathogen-associated molecular patterns. J Immunol 2005; 174: 6045–6053.

    Article  CAS  Google Scholar 

  13. Baggiolini M, Clark-Lewis I . Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 1992; 307: 97–101.

    Article  CAS  Google Scholar 

  14. Barreau C, Paillard L, Osborne HB . AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2005; 33: 7138–7150.

    Article  CAS  Google Scholar 

  15. Winzen R, Thakur BK, Dittrich-Breiholz O, Shah M, Redich N, Dhamija S et al. Functional analysis of KSRP interaction with the AU-rich element of interleukin-8 and identification of inflammatory mRNA targets. Mol Cell Biol 2007; 27: 8388–8400.

    Article  CAS  Google Scholar 

  16. Anderson P . Post-transcriptional control of cytokine production. Nat Immunol 2008; 9: 353–359.

    Article  CAS  Google Scholar 

  17. Clark A, Dean J, Tudor C, Saklatvala J . Post-transcriptional gene regulation by MAP kinases via AU-rich elements. Front Biosci 2009; 14: 847–871.

    Article  CAS  Google Scholar 

  18. Chen CY, Shyu AB . AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 1995; 20: 465–470.

    Article  CAS  Google Scholar 

  19. Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M . Multiple control of interleukin-8 gene expression. J Leukoc Biol 2002; 72: 847–855.

    CAS  PubMed  Google Scholar 

  20. Thomas RS, Tymms MJ, McKinlay LH, Shannon MF, Seth A, Kola I . ETS1, NFkappaB and AP1 synergistically transactivate the human GM-CSF promoter. Oncogene 1997; 14: 2845–2855.

    Article  CAS  Google Scholar 

  21. Jenkins F, Cockerill PN, Bohmann D, Shannon MF . Multiple signals are required for function of the human granulocyte-macrophage colony-stimulating factor gene promoter in T cells. J Immunol 1995; 155: 1240–1251.

    CAS  PubMed  Google Scholar 

  22. Graff JC, Behnke M, Radke J, White M, Jutila MA . A comprehensive SAGE database for the analysis of gammadelta T cells. Int Immunol 2006; 18: 613–626.

    Article  CAS  Google Scholar 

  23. Hedges JF, Buckner DL, Rask KM, Kerns HM, Jackiw LO, Trunkle TC et al. Mucosal lymphatic-derived gammadelta T cells respond early to experimental Salmonella enterocolitis by increasing expression of IL-2R alpha. Cell Immunol 2007; 246: 8–16.

    Article  CAS  Google Scholar 

  24. Ramiro-Puig E, Pérez-Cano FJ, Ramos-Romero S, Pérez-Berezo T, Castellote C, Permanyer J et al. Intestinal immune system of young rats influenced by cocoa-enriched diet. J Nutr Biochem 2008; 19: 555–565.

    Article  CAS  Google Scholar 

  25. McColl SR, Clark-Lewis I . Inhibition of murine neutrophil recruitment in vivo by CXC chemokine receptor antagonists. J Immunol 1999; 163: 2829–2835.

    CAS  PubMed  Google Scholar 

  26. Wengner AM, Pitchford SC, Furze RC, Rankin SM . The coordinated action of G-CSF and ELR + CXC chemokines in neutrophil mobilization during acute inflammation. Blood 2008; 111: 42–49.

    Article  CAS  Google Scholar 

  27. Tebo J, Der S, Frevel M, Khabar KS, Williams BR, Hamilton TA . Heterogeneity in control of mRNA stability by AU-rich elements. J Biol Chem 2003; 278: 12085–12093.

    Article  CAS  Google Scholar 

  28. Akashi M, Hachiya M, Koeffler HP, Suzuki G . Irradiation increases levels of GM-CSF through RNA stabilization which requires an AU-rich region in cancer cells. Biochem Biophys Res Commun 1992; 189: 986–993.

    Article  CAS  Google Scholar 

  29. Winzen R, Gowrishankar G, Bollig F, Redich N, Resch K, Holtmann H . Distinct domains of AU-rich elements exert different functions in mRNA destabilization and stabilization by p38 mitogen-activated protein kinase or HuR. Mol Cell Biol 2004; 24: 4835–4847.

    Article  CAS  Google Scholar 

  30. Wang SW, Pawlowski J, Wathen ST, Kinney SD, Lichenstein HS, Manthey CL . Cytokine mRNA decay is accelerated by an inhibitor of p38-mitogen-activated protein kinase. Inflamm Res 1999; 48: 533–538.

    Article  CAS  Google Scholar 

  31. Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB et al. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 1999; 18: 4969–4980.

    Article  CAS  Google Scholar 

  32. Frevel MA, Bakheet T, Silva AM, Hissong JG, Khabar KS, Williams BR . p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol 2003; 23: 425–436.

    Article  CAS  Google Scholar 

  33. Esnault S, Malter JS . Extracellular signal-regulated kinase mediates granulocyte-macrophage colony-stimulating factor messenger RNA stabilization in tumor necrosis factor-alpha plus fibronectin-activated peripheral blood eosinophils. Blood 2002; 99: 4048–4052.

    Article  CAS  Google Scholar 

  34. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998; 273: 18623–18632.

    Article  CAS  Google Scholar 

  35. Chauhan D, Kharbanda SM, Rubin E, Barut BA, Mohrbacher A, Kufe DW et al. Regulation of c-jun gene expression in human T lymphocytes. Blood 1993; 81: 1540–1548.

    CAS  PubMed  Google Scholar 

  36. Henness S, van Thoor E, Ge Q, Armour CL, Hughes JM, Ammit AJ . IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM. Am J Physiol Lung Cell Mol Physiol 2006; 290: L1283–L1290.

    Article  CAS  Google Scholar 

  37. Cobb MH, Goldsmith EJ . How MAP kinases are regulated. J Biol Chem 1995; 270: 14843–14846.

    Article  CAS  Google Scholar 

  38. Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 1994; 78: 1039–1049.

    Article  CAS  Google Scholar 

  39. Han J, Lee JD, Bibbs L, Ulevitch RJ . A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265: 808–811.

    Article  CAS  Google Scholar 

  40. Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994; 76: 1025–1037.

    Article  Google Scholar 

  41. Madonna S, Scarponi C, De Pita O, Albanesi C . Suppressor of cytokine signaling 1 inhibits IFN-gamma inflammatory signaling in human keratinocytes by sustaining ERK1/2 activation. FASEB J 2008; 22: 3287–3297.

    Article  CAS  Google Scholar 

  42. Ip YT, Davis RJ . Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr Opin Cell Biol 1998; 10: 205–219.

    Article  CAS  Google Scholar 

  43. Lewis TS, Shapiro PS, Ahn NG . Signal transduction through MAP kinase cascades. Adv Cancer Res 1998; 74: 49–139.

    Article  CAS  Google Scholar 

  44. Robinson MJ, Cobb MH . Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997; 9: 180–186.

    Article  CAS  Google Scholar 

  45. Rajagopalan LE, Malter JS . Modulation of granulocyte-macrophage colony-stimulating factor mRNA stability in vitro by the adenosine-uridine binding factor. J Biol Chem 1994; 269: 23882–23888.

    CAS  PubMed  Google Scholar 

  46. Capowski EE, Esnault S, Bhattacharya S, Malter JS . Y box-binding factor promotes eosinophil survival by stabilizing granulocyte-macrophage colony-stimulating factor mRNA. J Immunol 2001; 167: 5970–5976.

    Article  CAS  Google Scholar 

  47. Datta S, Biswas R, Novotny M, Pavicic Jr PG, Herjan T, Mandal P et al. Tristetraprolin regulates CXCL1 (KC) mRNA stability. J Immunol 2008; 180: 2545–2552.

    Article  CAS  Google Scholar 

  48. Fan XC, Steitz JA . Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 1998; 17: 3448–3460.

    Article  CAS  Google Scholar 

  49. Tebo JM, Datta S, Kishore R, Kolosov M, Major JA, Ohmori Y et al. Interleukin-1-mediated stabilization of mouse KC mRNA depends on sequences in both 5′- and 3′-untranslated regions. J Biol Chem 2000; 275: 12987–12993.

    Article  CAS  Google Scholar 

  50. Xu N, Chen CY, Shyu AB . Versatile role for hnRNP D isoforms in the differential regulation of cytoplasmic mRNA turnover. Mol Cell Biol 2001; 21: 6960–6971.

    Article  CAS  Google Scholar 

  51. Blazso G, Gabor M, Rohdewald P . Antiinflammatory activities of procyanidin-containing extracts from Pinus pinaster Ait. after oral and cutaneous application. Pharmazie 1997; 52: 380–382.

    CAS  PubMed  Google Scholar 

  52. Cheshier JE, Ardestani-Kaboudanian S, Liang B, Araghiniknam M, Chung S, Lane L et al. Immunomodulation by pycnogenol in retrovirus-infected or ethanol-fed mice. Life Sci 1996; 58: L–96.

    Google Scholar 

  53. Liu FJ, Zhang YX, Lau BH . Pycnogenol enhances immune and haemopoietic functions in senescence-accelerated mice. Cell Mol Life Sci 1998; 54: 1168–1172.

    Article  CAS  Google Scholar 

  54. Terra X, Valls J, Vitrac X, Mérrillon JM, Arola L, Ardèvol A et al. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 2007; 55: 4357–4365.

    Article  CAS  Google Scholar 

  55. Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI . Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-kappaB activation at multiple steps in Jurkat T cells. FASEB J 2004; 18: 167–169.

    Article  CAS  Google Scholar 

  56. Oh GS, Pae HO, Choi BM, Lee HS, Kim IK, Yun YG et al. Penta-O-galloyl-beta-D-glucose inhibits phorbol myristate acetate-induced interleukin-8 [correction of intereukin-8] gene expression in human monocytic U937 cells through its inactivation of nuclear factor-kappaB. Int Immunopharmacol 2004; 4: 377–386.

    Article  CAS  Google Scholar 

  57. Yang F, Oz HS, Barve S, de Villiers WJ, McClain CJ, Varilek GW . The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol 2001; 60: 528–533.

    Article  CAS  Google Scholar 

  58. Sharma SD, Meeran SM, Katiyar SK . Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-kappaB signaling in in vivo SKH-1 hairless mice. Mol Cancer Ther 2007; 6: 995–1005.

    Article  CAS  Google Scholar 

  59. Williams RJ, Spencer JP, Rice-Evans C . Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 2004; 36: 838–849.

    Article  CAS  Google Scholar 

  60. Enomoto T, Nagasako-Akazome Y, Kanda T, Ikeda M, Dake Y . Clinical effects of apple polyphenols on persistent allergic rhinitis: A randomized double-blind placebo-controlled parallel arm study. J Investig Allergol Clin Immunol 2006; 16: 283–289.

    CAS  PubMed  Google Scholar 

  61. Zhang XY, Li WG, Wu YJ, Zheng TZ, Li W, Qu SY et al. Proanthocyanidin from grape seeds potentiates anti-tumor activity of doxorubicin via immunomodulatory mechanism. Int Immunopharmacol 2005; 5: 1247–1257.

    Article  CAS  Google Scholar 

  62. Kenny TP, Keen CL, Schmitz HH, Gershwin ME . Immune effects of cocoa procyanidin oligomers on peripheral blood mononuclear cells. Exp Biol Med (Maywood) 2007; 232: 293–300.

    CAS  Google Scholar 

  63. Hedges JF, Cockrell D, Jackiw L, Meissner N, Jutila MA . Differential mRNA expression in circulating gammadelta T lymphocyte subsets defines unique tissue-specific functions. J Leukoc Biol 2003; 73: 306–314.

    Article  CAS  Google Scholar 

  64. Lahmers KK, Hedges JF, Jutila MA, Deng M, Abrahamsen MS, Brown WC . Comparative gene expression by WC1+ gammadelta and CD4+ alphabeta T lymphocytes, which respond to Anaplasma marginale, demonstrates higher expression of chemokines and other myeloid cell-associated genes by WC1+ gammadelta T cells. J Leukoc Biol 2006; 80: 939–952.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Ed Schmidt and Kate McInnerney (Montana State University) are acknowledged for critical review of the manuscript and technical assistance with microarray experiments, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Jutila.

Ethics declarations

Competing interests

MAJ holds shares in LigoCyte Pharmaceuticals, Inc, which together with Montana State University held a National Institutes of Health contract that partially funded this work. All other authors have no financial conflict of interest.

Additional information

This study was supported by funding from the National Institutes of Health (NIH) (NCCAM AT0004986-01), NIAID Contract (HHSN26620040009C/N01-AI-40009), NIH COBRE, and support from the Murdock Charitable Trust.

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daughenbaugh, K., Holderness, J., Graff, J. et al. Contribution of transcript stability to a conserved procyanidin-induced cytokine response in γδ T cells. Genes Immun 12, 378–389 (2011). https://doi.org/10.1038/gene.2011.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.7

Keywords

This article is cited by

Search

Quick links