Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Variations in Gnai2 and Rgs1 expression affect chemokine receptor signaling and the organization of secondary lymphoid organs

Abstract

Ligand bound chemoattractant receptors activate the heterotrimeric G-protein Gi to stimulate downstream signaling pathways to properly position lymphocytes in lymphoid organs. Here, we show how variations in the expression of a chemokine receptor and in two components in the signaling pathway, Gαi2 and RGS1, affect the output fidelity of the signaling pathway. Examination of B cells from mice with varying numbers of intact alleles of Ccr7, Rgs1, Gnai2, and Gnai3 provided the basis for these results. Loss of a single allele of either Gnai2 or Rgs1 affected CCL19 triggered chemotaxis, whereas the loss of a single allele of Ccr7, which encodes the cognate CCL19 receptor, had little effect. Emphasizing the importance of Gnai2, B cells lacking Gnai3 expression responded to chemokines better than did wild-type B cells. At an organismal level, variations in Rgs1 and Gnai2 expression affected marginal zone B-cell development, splenic architecture, lymphoid follicle size, and germinal center morphology. Gnai2 expression was also needed for the proper alignment of MOMA-1+ macrophages and MAdCAM-1+ endothelial cells along marginal zone sinuses in the spleen. These data indicate that chemoattractant receptors, heterotrimeric G-proteins, and RGS protein expression levels have a complex interrelationship that affects the responses to chemoattractant exposure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Springer TA . Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301–314.

    Article  CAS  Google Scholar 

  2. Kunkel EJ, Butcher EC . Chemokines and the tissue-specific migration of lymphocytes. Immunity 2002; 16: 1–4.

    Article  CAS  Google Scholar 

  3. Cyster JG . Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 2005; 23: 127–159.

    Article  CAS  Google Scholar 

  4. Neptune ER, Bourne HR . Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci USA 1997; 94: 14489–14494.

    Article  CAS  Google Scholar 

  5. Arai H, Tsou CL, Charo IF . Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors. Proc Natl Acad Sci USA 1997; 94: 14495–14499.

    Article  CAS  Google Scholar 

  6. Hepler JR, Gilman AG . G proteins. Trends Biochem Sci 1992; 17: 383–387.

    Article  CAS  Google Scholar 

  7. Neer EJ . Heterotrimeric G proteins: organizers of transmembrane signals. Cell 1995; 80: 249–257.

    Article  CAS  Google Scholar 

  8. Han SB, Moratz C, Huang NN, Kelsall B, Cho H, Shi CS et al. Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity 2005; 22: 343–354.

    Article  CAS  Google Scholar 

  9. Hwang IY, Park C, Kehrl JH . Impaired trafficking of Gnai2+/− and Gnai2−/− T lymphocytes: implications for T cell movement within lymph nodes. J Immunol 2007; 179: 439–448.

    Article  CAS  Google Scholar 

  10. Wettschureck N, Moers A, Offermanns S . Mouse models to study G-protein-mediated signaling. Pharmacol Ther 2004; 101: 75–89.

    Article  CAS  Google Scholar 

  11. Jin Y, Wu MX . Requirement of Galphai in thymic homing and early T cell development. Mol Immunol 2008; 45: 3401–3410.

    Article  CAS  Google Scholar 

  12. Kinzer-Ursem TL, Linderman JJ . Both ligand- and cell-specific parameters control ligand agonism in a kinetic model of g protein-coupled receptor signaling. PLoS Comput Biol 2007; 3: e6.

    Article  Google Scholar 

  13. Kehrl JH . Heterotrimeric G protein signaling: roles in immune function and fine-tuning by RGS proteins. Immunity 1998; 8: 1–10.

    Article  CAS  Google Scholar 

  14. Zhong H, Neubig RR . Regulator of G protein signaling proteins: novel multifunctional drug targets. J Pharmacol Exp Ther 2001; 297: 837–845.

    CAS  PubMed  Google Scholar 

  15. Rudolph U, Finegold MJ, Rich SS, Harriman GR, Srinivasan Y, Brabet P et al. Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat Genet 1995; 10: 143–150.

    Article  CAS  Google Scholar 

  16. Gohla A, Klement K, Piekorz RP, Pexa K, vom Dahl S, Spicher K et al. An obligatory requirement for the heterotrimeric G protein Gi3 in the antiautophagic action of insulin in the liver. Proc Natl Acad Sci USA 2007; 104: 3003–3008.

    Article  CAS  Google Scholar 

  17. Thompson BD, Jin Y, Wu KH, Colvin RA, Luster AD, Birnbaumer L et al. Inhibition of G alpha i2 activation by G alpha i3 in CXCR3-mediated signaling. J Biol Chem 2007; 282: 9547–9555.

    Article  CAS  Google Scholar 

  18. Moratz C, Kang VH, Druey KM, Shi CS, Scheschonka A, Murphy PM et al. Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling responses of B lymphocytes. J Immunol 2000; 164: 1829–1838.

    Article  CAS  Google Scholar 

  19. Shi GX, Harrison K, Han SB, Moratz C, Kehrl JH . Toll-like receptor signaling alters the expression of regulator of G protein signaling proteins in dendritic cells: implications for G protein-coupled receptor signaling. J Immunol 2004; 172: 5175–5184.

    Article  CAS  Google Scholar 

  20. Han JI, Huang NN, Kim DU, Kehrl JH . RGS1 and RGS13 mRNA silencing in a human B lymphoma line enhances responsiveness to chemoattractants and impairs desensitization. J Leukoc Biol 2006; 79: 1357–1368.

    Article  CAS  Google Scholar 

  21. Bansal G, DiVietro JA, Kuehn HS, Rao S, Nocka KH, Gilfillan AM et al. RGS13 controls g protein-coupled receptor-evoked responses of human mast cells. J Immunol 2008; 181: 7882–7890.

    Article  CAS  Google Scholar 

  22. Sinha RK, Park C, Hwang IY, Davis MD, Kehrl JH . B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 2009; 30: 434–446.

    Article  CAS  Google Scholar 

  23. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 2002; 416: 94–99.

    Article  Google Scholar 

  24. Dalwadi H, Wei B, Schrage M, Spicher K, Su TT, Birnbaumer L et al. B cell developmental requirement for the G alpha i2 gene. J Immunol 2003; 170: 1707–1715.

    Article  CAS  Google Scholar 

  25. Moratz C, Hayman JR, Gu H, Kehrl JH . Abnormal B-cell responses to chemokines, disturbed plasma cell localization, and distorted immune tissue architecture in Rgs1−/− mice. Mol Cell Biol 2004; 24: 5767–5775.

    Article  CAS  Google Scholar 

  26. Allen CD, Cyster JG . Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin Immunol 2008; 20: 14–25.

    Article  CAS  Google Scholar 

  27. Martin F, Kearney JF . Marginal-zone B cells. Nat Rev Immunol 2002; 2: 323–335.

    Article  CAS  Google Scholar 

  28. Hao N, Yildirim N, Wang Y, Elston TC, Dohlman HG . Regulators of G protein signaling and transient activation of signaling: experimental and computational analysis reveals negative and positive feedback controls on G protein activity. J Biol Chem 2003; 278: 46506–46515.

    Article  CAS  Google Scholar 

  29. Wang Y, Marotti Jr LA, Lee MJ, Dohlman HG . Differential regulation of G protein alpha subunit trafficking by mono- and polyubiquitination. J Biol Chem 2005; 280: 284–291.

    Article  CAS  Google Scholar 

  30. Behar M, Hao N, Dohlman HG, Elston TC . Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways. Biophys J 2007; 93: 806–821.

    Article  CAS  Google Scholar 

  31. Yu RC, Pesce CG, Colman-Lerner A, Lok L, Pincus D, Serra E et al. Negative feedback that improves information transmission in yeast signalling. Nature 2008; 456: 755–761.

    Article  CAS  Google Scholar 

  32. Reif K, Cyster JG . RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J Immunol 2000; 164: 4720–4729.

    Article  CAS  Google Scholar 

  33. Piovan E, Tosello V, Indraccolo S, Masiero M, Persano L, Esposito G et al. Differential regulation of hypoxia-induced CXCR4 triggering during B-cell development and lymphomagenesis. Cancer Res 2007; 67: 8605–8614.

    Article  CAS  Google Scholar 

  34. Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov et al. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci USA 2005; 102: 15030–15035.

    Article  CAS  Google Scholar 

  35. Pagano M, Jordan JD, Neves SR, Nguyen T, Iyengar R . Galphao/i-stimulated proteosomal degradation of RGS20: a mechanism for temporal integration of Gs and Gi pathways. Cell Signal 2008; 20: 1190–1197.

    Article  CAS  Google Scholar 

  36. Zuberi Z, Birnbaumer L, Tinker A . The role of inhibitory heterotrimeric G proteins in the control of in vivo heart rate dynamics. Am J Physiol Regul Integr Comp Physiol 2008; 295: R1822–R1830.

    Article  CAS  Google Scholar 

  37. Kleemann P, Papa D, Vigil-Cruz S, Seifert R . Functional reconstitution of the human chemokine receptor CXCR4 with G(i)/G (o)-proteins in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacol 2008; 378: 261–274.

    Article  CAS  Google Scholar 

  38. Tan JB, Xu K, Cretegny K, Visan I, Yuan JS, Egan SE et al. Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches. Immunity 2009; 30: 254–263.

    Article  Google Scholar 

  39. Cinamon G, Matloubian M, Lesneski MJ, Xu Y, Low C, Lu T et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol 2004; 5: 713–720.

    Article  CAS  Google Scholar 

  40. Girkontaite I, Sakk V, Wagner M, Borggrefe T, Tedford K, Chun J et al. The sphingosine-1-phosphate (S1P) lysophospholipid receptor S1P3 regulates MAdCAM-1+ endothelial cells in splenic marginal sinus organization. J Exp Med 2004; 200: 1491–1501.

    Article  CAS  Google Scholar 

  41. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M . A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996; 87: 1037–1047.

    Article  CAS  Google Scholar 

  42. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999; 99: 23–33.

    Article  CAS  Google Scholar 

  43. Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000; 406: 309–314.

    Article  CAS  Google Scholar 

  44. Bajenoff M, Glaichenhaus N, Germain RN . Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J Immunol 2008; 181: 3947–3954.

    Article  CAS  Google Scholar 

  45. Cyster JG, Goodnow CC . Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords. J Exp Med 1995; 182: 581–586.

    Article  CAS  Google Scholar 

  46. Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 2004; 5: 943–952.

    Article  CAS  Google Scholar 

  47. Figge MT, Garin A, Gunzer M, Kosco-Vilbois M, Toellner KM, Meyer-Hermann M . Deriving a germinal center lymphocyte migration model from two-photon data. J Exp Med 2008; 205: 3019–3029.

    Article  CAS  Google Scholar 

  48. Jiang M, Spicher K, Boulay G, Wang Y, Birnbaumer L . Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc Natl Acad Sci USA 2001; 98: 3577–3582.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mary Rust for excellent editorial assistance and Dr Anthony Fauci for his continued support. This research was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Kehrl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I., Park, C., Harrision, K. et al. Variations in Gnai2 and Rgs1 expression affect chemokine receptor signaling and the organization of secondary lymphoid organs. Genes Immun 11, 384–396 (2010). https://doi.org/10.1038/gene.2010.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.27

Keywords

This article is cited by

Search

Quick links