Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of a novel cerebral malaria susceptibility locus (Berr5) on mouse chromosome 19

Abstract

Cerebral malaria (CM) is an acute, generally lethal condition characterized by high fever, seizures and coma. The genetic component to CM can be investigated in mouse models that vary in degree of susceptibility to infection with Plasmodium berghei ANKA. Using survival time to measure susceptibility in an informative F2 cross (n=257), we identified linkage to chromosome 19 (Berr5 (Berghei resistance locus 5), LOD=4.69) controlling, in part, the differential response between resistant BALB/c and susceptible C57BL/6 progenitors. BALB/c alleles convey increased survival through the cerebral phase of infection but have no quantitative effect on parasitemia during the later, anemic phase. The Berr5 locus colocalizes with three other immune loci, including Trl-4 (tuberculosis resistance), Tsiq2 (T-cell secretion of IL-4) and Eae19 (experimental allergic encephalitis 19), suggesting the possibility of a common genetic effect underlying these phenotypes. Potential positional candidates include the family of Ifit1–3 (interferon-inducible protein with tetratricopeptide repeats 1–3) and Fas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. WHO. Malaria. In: World Health Organization 2007.

  2. Lamb TJ, Brown DE, Potocnik AJ, Langhorne J . Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med 2006; 8: 1–22.

    Article  PubMed  Google Scholar 

  3. Coltel N, Combes V, Hunt NH, Grau GE . Cerebral malaria—a neurovascular pathology with many riddles still to be solved. Curr Neurovasc Res 2004; 1: 91–110.

    Article  PubMed  Google Scholar 

  4. Nyangoto EO . Cell-mediated effector molecules and complicated malaria. Int Arch Allergy Immunol 2005; 137: 326–342.

    Article  CAS  PubMed  Google Scholar 

  5. Kwiatkowski DP . How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 2005; 77: 171–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazier D, Nitcheu J, Idrissa-Boubou M . Cerebral malaria and immunogenetics. Parasite Immunol 2000; 22: 613–623.

    Article  CAS  PubMed  Google Scholar 

  7. Sexton AC, Good RT, Hansen DS, D'Ombrain MC, Buckingham L, Simpson K et al. Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria. J Infect Dis 2004; 189: 1245–1256.

    Article  CAS  PubMed  Google Scholar 

  8. Delahaye NF, Coltel N, Puthier D, Flori L, Houlgatte R, Iraqi FA et al. Gene-expression profiling discriminates between cerebral malaria (CM)-susceptible mice and CM-resistant mice. J Infect Dis 2006; 193: 312–321.

    Article  CAS  PubMed  Google Scholar 

  9. Lovegrove FE, Gharib SA, Patel SN, Hawkes CA, Kain KC, Liles WC . Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. Am J Pathol 2007; 171: 1894–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hansen AM, Ball HJ, Mitchell AJ, Miu J, Takikawa O, Hunt NH . Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. Int J Parasitol 2004; 34: 1309–1319.

    Article  CAS  PubMed  Google Scholar 

  11. Senaldi G, Shaklee CL, Guo J, Martin L, Boone T, Mak TW et al. Protection against the mortality associated with disease models mediated by TNF and IFN-gamma in mice lacking IFN regulatory factor-1. J Immunol 1999; 163: 6820–6826.

    CAS  PubMed  Google Scholar 

  12. Engwerda CR, Mynott TL, Sawhney S, De Souza JB, Bickle QD, Kaye PM . Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J Exp Med 2002; 195: 1371–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patel SN, Berghout J, Lovegrove FE, Ayi K, Conroy A, Serghides L et al. C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 2008; 205: 1133–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rogerson SJ, Grau GE, Hunt NH . The microcirculation in severe malaria. Microcirculation 2004; 11: 559–576.

    Article  PubMed  Google Scholar 

  15. Pais TF, Chatterjee S . Brain macrophage activation in murine cerebral malaria precedes accumulation of leukocytes and CD8+ T cell proliferation. J Neuroimmunol 2005; 163: 73–83.

    Article  CAS  PubMed  Google Scholar 

  16. Renia L, Potter SM, Mauduit M, Rosa DS, Kayibanda M, Deschemin JC et al. Pathogenic T cells in cerebral malaria. Int J Parasitol 2006; 36: 547–554.

    Article  CAS  PubMed  Google Scholar 

  17. Nagayasu E, Nagakura K, Akaki M, Tamiya G, Makino S, Nakano Y et al. Association of a determinant on mouse chromosome 18 with experimental severe Plasmodium berghei malaria. Infect Immun 2002; 70: 512–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bagot S, Campino S, Penha-Goncalves C, Pied S, Cazenave PA, Holmberg D . Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain. Proc Natl Acad Sci USA 2002; 99: 9919–9923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Campino S, Bagot S, Bergman ML, Almeida P, Sepulveda N, Pied S et al. Genetic control of parasite clearance leads to resistance to Plasmodium berghei ANKA infection and confers immunity. Genes Immun 2005; 6: 416–421.

    Article  CAS  PubMed  Google Scholar 

  20. Ohno T, Nishimura M . Detection of a new cerebral malaria susceptibility locus, using CBA mice. Immunogenetics 2004; 56: 675–678.

    Article  CAS  PubMed  Google Scholar 

  21. Penet MF, Viola A, Confort-Gouny S, Le Fur Y, Duhamel G, Kober F et al. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema. J Neurosci 2005; 25: 7352–7358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyartchuk VL, Broman KW, Mosher RE, D'Orazio SE, Starnbach MN, Dietrich WF . Multigenic control of Listeria monocytogenes susceptibility in mice. Nat Genet 2001; 27: 259–260.

    Article  CAS  PubMed  Google Scholar 

  23. Haldar K, Murphy SC, Milner DA, Taylor TE . Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu Rev Pathol 2007; 2: 217–249.

    Article  CAS  PubMed  Google Scholar 

  24. Hunt NH, Grau GE . Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol 2003; 24: 491–499.

    Article  CAS  PubMed  Google Scholar 

  25. Clark TG, Diakite M, Auburn S, Campino S, Fry AE, Green A et al. Tumor necrosis factor and lymphotoxin-alpha polymorphisms and severe malaria in African populations. J Infect Dis 2009; 199: 569–575.

    Article  CAS  PubMed  Google Scholar 

  26. Campanella GS, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA et al. Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci USA 2008; 105: 4814–4819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bluyssen HA, Vlietstra RJ, Faber PW, Smit EM, Hagemeijer A, Trapman J . Structure, chromosome localization, and regulation of expression of the interferon-regulated mouse Ifi54/Ifi56 gene family. Genomics 1994; 24: 137–148.

    Article  CAS  PubMed  Google Scholar 

  28. Guo J, Peters KL, Sen GC . Induction of the human protein P56 by interferon, double-stranded RNA, or virus infection. Virology 2000; 267: 209–219.

    Article  CAS  PubMed  Google Scholar 

  29. Fensterl V, White CL, Yamashita M, Sen GC . Novel characteristics of the function and induction of murine p56 family proteins. J Virol 2008; 82: 11045–11053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berchtold S, Manncke B, Klenk J, Geisel J, Autenrieth IB, Bohn E . Forced IFIT-2 expression represses LPS induced TNF-alpha expression at posttranscriptional levels. BMC Immunol 2008; 9: 75.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Strasser A, Jost PJ, Nagata S . The many roles of FAS receptor signaling in the immune system. Immunity 2009; 30: 180–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohno T, Kobayashi F, Nishimura M . Fas has a role in cerebral malaria, but not in proliferation or exclusion of the murine parasite in mice. Immunogenetics 2005; 57: 293–296.

    Article  PubMed  Google Scholar 

  33. Villa-Morales M, Santos J, Fernandez-Piqueras J . Functional Fas (Cd95/Apo-1) promoter polymorphisms in inbred mouse strains exhibiting different susceptibility to gamma-radiation-induced thymic lymphoma. Oncogene 2006; 25: 2022–2029.

    Article  CAS  PubMed  Google Scholar 

  34. Mitsos LM, Cardon LR, Ryan L, LaCourse R, North RJ, Gros P . Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc Natl Acad Sci USA 2003; 100: 6610–6615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi P, Xanthaki D, Rose SJ, Haywood M, Reiser H, Morley BJ . Linkage analysis of the genetic determinants of T-cell IL-4 secretion, and identification of Flj20274 as a putative candidate gene. Genes Immun 2005; 6: 290–297.

    Article  CAS  PubMed  Google Scholar 

  36. Yanez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC . Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 1996; 157: 1620–1624.

    CAS  PubMed  Google Scholar 

  37. Yoshimoto T, Takahama Y, Wang CR, Yoneto T, Waki S, Nariuchi H . A pathogenic role of IL-12 in blood-stage murine malaria lethal strain Plasmodium berghei NK65 infection. J Immunol 1998; 160: 5500–5505.

    CAS  PubMed  Google Scholar 

  38. Butterfield RJ, Blankenhorn EP, Roper RJ, Zachary JF, Doerge RW, Teuscher C . Identification of genetic loci controlling the characteristics and severity of brain and spinal cord lesions in experimental allergic encephalomyelitis. Am J Pathol 2000; 157: 637–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fortin A, Diez E, Rochefort D, Laroche L, Malo D, Rouleau GA et al. Recombinant congenic strains derived from A/J and C57BL/6J: a tool for genetic dissection of complex traits. Genomics 2001; 74: 21–35.

    Article  CAS  PubMed  Google Scholar 

  40. Broman KW . Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 2003; 163: 1169–1175.

    PubMed  PubMed Central  Google Scholar 

  41. Marquis JF, Nantel A, LaCourse R, Ryan L, North RJ, Gros P . Fibrotic response as a distinguishing feature of resistance and susceptibility to pulmonary infection with Mycobacterium tuberculosis in mice. Infect Immun 2008; 76: 78–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in PG's lab was supported by a Team Grant (CTP 79842) from the Canadian Institutes of Health Research (CIHR) to K Kain (U Toronto) and PG (McGill University), and by a CIHR operating Grant (FRN79343) to MM Stevenson, and to PG. PG is a James McGill Professor of Biochemistry, and JB is supported by a Doctoral Award from CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Gros.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berghout, J., Min-Oo, G., Tam, M. et al. Identification of a novel cerebral malaria susceptibility locus (Berr5) on mouse chromosome 19. Genes Immun 11, 310–318 (2010). https://doi.org/10.1038/gene.2009.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.79

Keywords

This article is cited by

Search

Quick links