Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple loci comprising immune-related genes regulate experimental neuroinflammation

Abstract

A 58 Mb region on rat chromosome 4 known to regulate experimental autoimmune encephalomyelitis (EAE) was genetically dissected. High-resolution linkage analysis in an advanced intercross line (AIL) revealed four quantitative trait loci (QTLs), Eae24–Eae27. Both Eae24 and Eae25 regulated susceptibility and severity phenotypes, whereas Eae26 regulated severity and Eae27 regulated susceptibility. Analyses of the humoral immune response revealed that the levels of serum anti-myelin oligodendrocyte glycoprotein (MOG) immunoglobin G1 (IgG1) antibodies are linked to Eae24 and anti-MOG IgG2b antibodies are linked to both Eae24 and Eae26. We tested the parental DA strain and six recombinant congenic strains that include overlapping fragments of this region in MOG-EAE. Eae24 and Eae25 showed significant protection during the acute phase of EAE, whereas Eae25 and Eae26 significantly modified severity but not susceptibility. The smallest congenic fragment, which carries Eae25 alone, influenced both susceptibility and severity, and protected from the chronic phase of disease. These results support the multiple QTLs identified in the AIL. By demonstrating several QTLs comprising immune-related genes, which potentially interact, we provide a significant step toward elucidation of the polygenically regulated pathogenesis of MOG-EAE and possibly multiple sclerosis (MS), and opportunities for comparative genetics and testing in MS case–control cohorts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mumford CJ, Wood NW, Kellar-Wood H, Thorpe JW, Miller DH, Compston DA . The British Isles survey of multiple sclerosis in twins. Neurology 1994; 44: 11–15.

    Article  CAS  Google Scholar 

  2. Ebers GC, Sadovnick AD, Risch NJ . A genetic basis for familial aggregation in multiple sclerosis. Canadian collaborative study group. Nature 1995; 377: 150–151.

    Article  CAS  Google Scholar 

  3. Sadovnick AD, Ebers GC, Dyment DA, Risch NJ . Evidence for genetic basis of multiple sclerosis. The canadian collaborative study group. Lancet 1996; 347: 1728–1730.

    Article  CAS  Google Scholar 

  4. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108–1112.

    Article  CAS  Google Scholar 

  5. Abdeen H, Heggarty S, Hawkins SA, Hutchinson M, McDonnell GV, Graham CA . Mapping candidate non-MHC susceptibility regions to multiple sclerosis. Genes Immun 2006; 7: 494–502.

    Article  CAS  Google Scholar 

  6. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 2007; 39: 1108–1113.

    Article  CAS  Google Scholar 

  7. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 2007; 39: 1083–1091.

    Article  CAS  Google Scholar 

  8. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357: 851–862.

    Article  CAS  Google Scholar 

  9. Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, Kerschensteiner M et al. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 1998; 8: 681–694.

    Article  CAS  Google Scholar 

  10. Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, Lassmann H et al. MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 1998; 102: 1265–1273.

    Article  CAS  Google Scholar 

  11. Becanovic K, Wallstrom E, Kornek B, Glaser A, Broman KW, Dahlman I et al. New loci regulating rat myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J Immunol 2003; 170: 1062–1069.

    Article  CAS  Google Scholar 

  12. Dahlman I, Jacobsson L, Glaser A, Lorentzen JC, Andersson M, Luthman H et al. Genome-wide linkage analysis of chronic relapsing experimental autoimmune encephalomyelitis in the rat identifies a major susceptibility locus on chromosome 9. J Immunol 1999; 162: 2581–2588.

    CAS  PubMed  Google Scholar 

  13. Dahlman I, Wallstrom E, Weissert R, Storch M, Kornek B, Jacobsson L et al. Linkage analysis of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the rat identifies a locus controlling demyelination on chromosome 18. Hum Mol Genet 1999; 8: 2183–2190.

    Article  CAS  Google Scholar 

  14. Roth MP, Viratelle C, Dolbois L, Delverdier M, Borot N, Pelletier L et al. A genome-wide search identifies two susceptibility loci for experimental autoimmune encephalomyelitis on rat chromosomes 4 and 10. J Immunol 1999; 162: 1917–1922.

    CAS  PubMed  Google Scholar 

  15. Dahlman I, Lorentzen JC, de Graaf KL, Stefferl A, Linington C, Luthman H et al. Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. Eur J Immunol 1998; 28: 2188–2196.

    Article  CAS  Google Scholar 

  16. Becanovic K, Backdahl L, Wallstrom E, Aboul-Enein F, Lassmann H, Olsson T et al. Paradoxical effects of arthritis-regulating chromosome 4 regions on myelin oligodendrocyte glycoprotein-induced encephalomyelitis in congenic rats. Eur J Immunol 2003; 33: 1907–1916.

    Article  CAS  Google Scholar 

  17. Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998; 95: 9979–9984.

    Article  CAS  Google Scholar 

  18. Encinas JA, Kuchroo VK . Mapping and identification of autoimmunity genes. Curr Opin Immunol 2000; 12: 691–697.

    Article  CAS  Google Scholar 

  19. Jagodic M, Marta M, Becanovic K, Sheng JR, Nohra R, Olsson T et al. Resolution of a 16.8 Mb autoimmunity-regulating rat chromosome 4 region into multiple encephalomyelitis quantitative trait Loci and evidence for epistasis. J Immunol 2005; 174: 918–924.

    Article  CAS  Google Scholar 

  20. Ockinger J, Serrano-Fernandez P, Moller S, Ibrahim SM, Olsson T, Jagodic M . Definition of a 1.06 Mb region linked to neuroinflammation in humans, rats and mice. Genetics 2006; 173: 1539–1545.

    Article  Google Scholar 

  21. Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, Jagodic M et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 2005; 37: 486–494.

    Article  CAS  Google Scholar 

  22. Jagodic M, Becanovic K, Sheng JR, Wu X, Backdahl L, Lorentzen JC et al. An advanced intercross line resolves eae18 into two narrow quantitative trait loci syntenic to multiple sclerosis candidate loci. J Immunol 2004; 173: 1366–1373.

    Article  CAS  Google Scholar 

  23. Backdahl L, Ribbhammar U, Lorentzen JC . Mapping and functional characterization of rat chromosome 4 regions that regulate arthritis models and phenotypes in congenic strains. Arthritis Rheum 2003; 48: 551–559.

    Article  Google Scholar 

  24. Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 1994; 153: 4349–4356.

    CAS  PubMed  Google Scholar 

  25. Encinas JA, Lees MB, Sobel RA, Symonowicz C, Weiner HL, Seidman CE et al. Identification of genetic loci associated with paralysis, inflammation and weight loss in mouse experimental autoimmune encephalomyelitis. Int Immunol 2001; 13: 257–264.

    Article  CAS  Google Scholar 

  26. Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A . Simplified mammalian DNA isolation procedure. Nucleic Acids Res 1991; 19: 4293.

    Article  CAS  Google Scholar 

  27. Jacob HJ, Brown DM, Bunker RK, Daly MJ, Dzau VJ, Goodman A et al. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nat Genet 1995; 9: 63–69.

    Article  CAS  Google Scholar 

  28. Sen S, Churchill GA . A statistical framework for quantitative trait mapping. Genetics 2001; 159: 371–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Broman KW, Wu H, Sen S, Churchill GA . R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003; 19: 889–890.

    Article  CAS  Google Scholar 

  30. Churchill GA, Doerge RW . Empirical threshold values for quantitative trait mapping. Genetics 1994; 138: 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  Google Scholar 

  32. Lander ES, Botstein D . Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989; 121: 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H . Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination [see comments]. Ann Neurol 2000; 47: 707–717.

    Article  CAS  Google Scholar 

  34. Prineas JW, Graham JS . Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 1981; 10: 149–158.

    Article  CAS  Google Scholar 

  35. Storch MK, Piddlesden S, Haltia M, Iivanainen M, Morgan P, Lassmann H . Multiple sclerosis: in situ evidence for antibody- and complement- mediated demyelination. Ann Neurol 1998; 43: 465–471.

    Article  CAS  Google Scholar 

  36. Raine CS, Cannella B, Hauser SL, Genain CP . Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 1999; 46: 144–160.

    Article  CAS  Google Scholar 

  37. Lassmann H, Brunner C, Bradl M, Linington C . Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathologica 1988; 75: 566–576.

    Article  CAS  Google Scholar 

  38. Subramanian S, Wakeland EK . The importance of epistatic interactions in the development of autoimmunity. Novartis Found Symp 2005; 267: 76–88; discussion 88–93.

    CAS  PubMed  Google Scholar 

  39. Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004; 21: 769–780.

    Article  CAS  Google Scholar 

  40. Kong PL, Morel L, Croker BP, Craft J . The centromeric region of chromosome 7 from MRL mice (Lmb3) is an epistatic modifier of Fas for autoimmune disease expression. J Immunol 2004; 172: 2785–2794.

    Article  CAS  Google Scholar 

  41. Pandey JP, Prohaszka Z, Veres A, Fust G, Hurme M . Epistatic effects of genes encoding immunoglobulin GM allotypes and interleukin-6 on the production of autoantibodies to 60- and 65-kDa heat-shock proteins. Genes Immun 2004; 5: 68–71.

    Article  CAS  Google Scholar 

  42. Mix E, Ibrahim S, Pahnke J, Koczan D, Sina C, Bottcher T et al. Gene-expression profiling of the early stages of MOG-induced EAE proves EAE-resistance as an active process. J Neuroimmunol 2004; 151: 158–170.

    Article  CAS  Google Scholar 

  43. Becanovic K, Jagodic M, Sheng JR, Dahlman I, Aboul-Enein F, Wallstrom E et al. Advanced intercross line mapping of Eae5 reveals Ncf-1 and CLDN4 as candidate genes for experimental autoimmune encephalomyelitis. J Immunol 2006; 176: 6055–6064.

    Article  CAS  Google Scholar 

  44. Herrera BM, Cader MZ, Dyment DA, Bell JT, Ramagopalan SV, Lincoln MR et al. Follow-up investigation of 12 proposed linkage regions in multiple sclerosis. Genes Immun 2006; 7: 366–371.

    Article  CAS  Google Scholar 

  45. Togni M, Swanson KD, Reimann S, Kliche S, Pearce AC, Simeoni L et al. Regulation of in vitro and in vivo immune functions by the cytosolic adaptor protein SKAP-HOM. Mol Cell Biol 2005; 25: 8052–8063.

    Article  CAS  Google Scholar 

  46. Deng C, Minguela A, Hussain RZ, Lovett-Racke AE, Radu C, Ward ES et al. Expression of the tyrosine phosphatase SRC homology 2 domain-containing protein tyrosine phosphatase 1 determines T cell activation threshold and severity of experimental autoimmune encephalomyelitis. J Immunol 2002; 168: 4511–4518.

    Article  CAS  Google Scholar 

  47. Bedoui S, Miyake S, Lin Y, Miyamoto K, Oki S, Kawamura N et al. Neuropeptide Y (NPY) suppresses experimental autoimmune encephalomyelitis: NPY1 receptor-specific inhibition of autoreactive Th1 responses in vivo. J Immunol 2003; 171: 3451–3458.

    Article  CAS  Google Scholar 

  48. Rinker 2nd JR, Trinkaus K, Cross AH . Elevated CSF free kappa light chains correlate with disability prognosis in multiple sclerosis. Neurology 2006; 67: 1288–1290.

    Article  CAS  Google Scholar 

  49. Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B et al. The nature and identification of quantitative trait loci: a community's view. Nat Rev Genet 2003; 4: 911–916.

    PubMed  Google Scholar 

  50. Li J, Gran B, Zhang GX, Ventura ES, Siglienti I, Rostami A et al. Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. J Neurol Sci 2003; 215: 95–103.

    Article  CAS  Google Scholar 

  51. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–1463.

    Article  CAS  Google Scholar 

  52. Roos IM, Kockum I, Hillert J . The interleukin 23 receptor gene in multiple sclerosis: a case–control study. J Neuroimmunol 2008; 194: 173–180.

    Article  CAS  Google Scholar 

  53. Adelmann M, Wood J, Benzel I, Fiori P, Lassmann H, Matthieu JM et al. The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat. J Neuroimmunol 1995; 63: 17–27.

    Article  CAS  Google Scholar 

  54. Genain CP, Nguyen MH, Letvin NL, Pearl R, Davis RL, Adelman M et al. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J Clin Invest 1995; 96: 2966–2974.

    Article  CAS  Google Scholar 

  55. Gracie JA, Bradley JA . Interleukin-12 induces interferon-gamma-dependent switching of IgG alloantibody subclass. Eur J Immunol 1996; 26: 1217–1221.

    Article  CAS  Google Scholar 

  56. Saoudi A, Kuhn J, Huygen K, de Kozak Y, Velu T, Goldman M et al. TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur J Immunol 1993; 23: 3096–3103.

    Article  CAS  Google Scholar 

  57. Martin AM, Blankenhorn EP, Maxson MN, Zhao M, Leif J, Mordes JP et al. Non-major histocompatibility complex-linked diabetes susceptibility loci on chromosomes 4 and 13 in a backcross of the DP-BB/Wor rat to the WF rat. Diabetes 1999; 48: 50–58.

    Article  CAS  Google Scholar 

  58. Martin AM, Maxson MN, Leif J, Mordes JP, Greiner DL, Blankenhorn EP . Diabetes-prone and diabetes-resistant BB rats share a common major diabetes susceptibility locus, iddm4: additional evidence for a ‘universal autoimmunity locus’ on rat chromosome 4. Diabetes 1999; 48: 2138–2144.

    Article  CAS  Google Scholar 

  59. Mordes JP, Cort L, Norowski E, Leif J, Fuller JM, Lernmark A et al. Analysis of the rat Iddm14 diabetes susceptibility locus in multiple rat strains: identification of a susceptibility haplotype in the Tcrb-V locus. Mamm Genome 2009; 20: 162–169.

    Article  CAS  Google Scholar 

  60. Blankenhorn EP, Descipio C, Rodemich L, Cort L, Leif JH, Greiner DL et al. Refinement of the Iddm4 diabetes susceptibility locus reveals TCRVbeta4 as a candidate gene. Ann N Y Acad Sci 2007; 1103: 128–131.

    Article  CAS  Google Scholar 

  61. Kawahito Y, Cannon GW, Gulko PS, Remmers EF, Longman RE, Reese VR et al. Localization of quantitative trait loci regulating adjuvant-induced arthritis in rats: evidence for genetic factors common to multiple autoimmune diseases [In Process Citation]. J Immunol 1998; 161: 4411–4419.

    CAS  PubMed  Google Scholar 

  62. Joe B . Quest for arthritis-causative genetic factors in the rat. Physiol Genomics 2006; 27: 1–11.

    Article  CAS  Google Scholar 

  63. Remmers EF, Longman RE, Du Y, OH A, Cannon GW, Griffiths MM et al. A genome scan localizes five non-MHC loci controlling collagen-induced arthritis in rats. Nat Genet 1996; 14: 82–85.

    Article  CAS  Google Scholar 

  64. Vingsbo-Lundberg C, Nordquist N, Olofsson P, Sundvall M, Saxne T, Pettersson U et al. Genetic control of arthritis onset, severity and chronicity in a model for rheumatoid arthritis in rats. Nat Genet 1998; 20: 401–404.

    Article  CAS  Google Scholar 

  65. Wilder RL, Griffiths MM, Remmers EF, Cannon GW, Caspi RR, Kawahito Y et al. Localization in rats of genetic loci regulating susceptibility to experimental erosive arthritis and related autoimmune diseases. Transplant Proc 1999; 31: 1585–1588.

    Article  CAS  Google Scholar 

  66. Sun SH, Silver PB, Caspi RR, Du Y, Chan CC, Wilder RL et al. Identification of genomic regions controlling experimental autoimmune uveoretinitis in rats. Int Immunol 1999; 11: 529–534.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr William Valdar for advice on statistical analyses. This study was supported by grants from the Swedish Research Council, The Wadsworth Foundation, Söderbergs Foundation, Petrus and Augusta Hedlunds Foundation, Bibbi and Niels Jensens Foundation, Montel Williams Foundation, Åke-Wibergs Stiftelse and the Swedish Foundation for Neurologically Disabled, EURATools (LSHG-CT-2005–019015) and Neuropromise (LSHM-CT-2005–018637). Monica Marta was supported by a fellowship from the Portuguese Fundação para a Ciência e Tecnologia—POCTI—Formar e Qualificar—Medida 1.1 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Marta.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marta, M., Stridh, P., Becanovic, K. et al. Multiple loci comprising immune-related genes regulate experimental neuroinflammation. Genes Immun 11, 21–36 (2010). https://doi.org/10.1038/gene.2009.62

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.62

Keywords

This article is cited by

Search

Quick links