Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression analysis and functional activity of interleukin-7 splice variants

Abstract

Alternative splicing results in multiple protein isoforms derived from a single gene. The magnitude of this process ranges from a complete loss of function to gain of new function. We examined, as a paradigm, alternative splicing of the non-redundant human cytokine, interleukin-7 (IL-7). We show that extensive IL-7 splicing in human tissues of different histology, including MTB+ granuloma lesions, transformed tissue and tumor cell lines. IL-7 splice variants were expressed as recombinant proteins. A differentially spliced IL-7 isoform, lacking exon 5, leads to STAT-5 phosphorylation in CD4+ and CD8+ T cells, promotes thymocyte maturation and T-cell survival. Human tumor lesions show aberrant IL-7 isoform expression, as compared with the autologous, non-transformed tissue. Alternatively spliced cytokines, such as IL-7, represent candidates for diagnostics and therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fry TJ, Mackall CL . The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol 2005; 174: 6571–6576.

    Article  CAS  Google Scholar 

  2. Schluns KS, Kieper WC, Jameson SC, Lefrancois L . Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 2000; 1: 426–432.

    Article  CAS  Google Scholar 

  3. Alpdogan O, Muriglan SJ, Eng JM, Willis LM, Greenberg AS, Kappel BJ et al. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest 2003; 112: 1095–1107.

    Article  CAS  Google Scholar 

  4. Hartgring SA, Bijlsma JW, Lafeber FP, van Roon JA . Interleukin-7 induced immunopathology in arthritis. Ann Rheum Dis 2006; 65 (Suppl 3): iii69–iii74.

    PubMed  PubMed Central  Google Scholar 

  5. Roato I, Brunetti G, Gorassini E, Grano M, Colucci S, Bonello L et al. IL-7 up-regulates TNF-alpha-dependent osteoclastogenesis in patients affected by solid tumor. PLoS ONE 2006; 1: e124.

    Article  Google Scholar 

  6. Rich BE, Campos-Torres J, Tepper RI, Moreadith RW, Leder P . Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice. J Exp Med 1993; 177: 305–316.

    Article  CAS  Google Scholar 

  7. Skjonsberg C, Erikstein BK, Smeland EB, Lie SO, Funderud S, Beiske K et al. Interleukin-7 differentiates a subgroup of acute lymphoblastic leukemias. Blood 1991; 77: 2445–2450.

    CAS  PubMed  Google Scholar 

  8. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D et al. Function of alternative splicing. Gene 2005; 344: 1–20.

    Article  CAS  Google Scholar 

  9. Matlin AJ, Clark F, Smith CW . Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005; 6: 386–398.

    Article  CAS  Google Scholar 

  10. Goodwin RG, Lupton S, Schmierer A, Hjerrild KJ, Jerzy R, Clevenger W et al. Human interleukin 7: molecular cloning and growth factor activity on human and murine B-lineage cells. Proc Natl Acad Sci USA 1989; 86: 302–306.

    Article  CAS  Google Scholar 

  11. Korte A, Moricke A, Beyermann B, Kochling J, Taube T, Kebelmann-Betzing C et al. Extensive alternative splicing of interleukin-7 in malignant hematopoietic cells: implication of distinct isoforms in modulating IL-7 activity. J Interferon Cytokine Res 1999; 19: 495–503.

    Article  CAS  Google Scholar 

  12. Frishman J, Long B, Knospe W, Gregory S, Plate J . Genes for interleukin 7 are transcribed in leukemic cell subsets of individuals with chronic lymphocytic leukemia. J Exp Med 1993; 177: 955–964.

    Article  CAS  Google Scholar 

  13. Madrigal-Estebas L, McManus R, Byrne B, Lynch S, Doherty DG, Kelleher D et al. Human small intestinal epithelial cells secrete interleukin-7 and differentially express two different interleukin-7 mRNA Transcripts: implications for extrathymic T-cell differentiation. Hum Immunol 1997; 58: 83–90.

    Article  CAS  Google Scholar 

  14. Mire-Sluis AR, Healey L, Griffiths S, Hockley D, Thorpe R . Development of a continuous IL-7-dependent murine pre-B cell line PB-1 suitable for the biological characterisation and assay of human IL-7. J Immunol Methods 2000; 236: 71–76.

    Article  CAS  Google Scholar 

  15. Garcia-Blanco MA . Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing. J Clin Invest 2003; 112: 474–480.

    Article  CAS  Google Scholar 

  16. Tsytsikov VN, Yurovsky VV, Atamas SP, Alms WJ, White B . Identification and characterization of two alternative splice variants of human interleukin-2. J Biol Chem 1996; 271: 23055–23060.

    Article  CAS  Google Scholar 

  17. Atamas SP, Choi J, Yurovsky VV, White B . An alternative splice variant of human IL-4, IL-4 delta 2, inhibits IL-4-stimulated T cell proliferation. J Immunol 1996; 156: 435–441.

    CAS  PubMed  Google Scholar 

  18. Tan X, Lefrancois L . Novel IL-15 isoforms generated by alternative splicing are expressed in the intestinal epithelium. Genes Immun 2006; 7: 407–416.

    Article  CAS  Google Scholar 

  19. Nishimura H, Fujimoto A, Tamura N, Yajima T, Wajjwalku W, Yoshikai Y . A novel autoregulatory mechanism for transcriptional activation of the IL-15 gene by a nonsecretable isoform of IL-15 generated by alternative splicing. FASEB J 2005; 19: 19–28.

    Article  CAS  Google Scholar 

  20. Maeurer MJ, Walter W, Martin D, Zitvogel L, Elder E, Storkus W et al. Interleukin-7 (IL-7) in colorectal cancer: IL-7 is produced by tissues from colorectal cancer and promotes preferential expansion of tumour infiltrating lymphocytes. Scand J Immunol 1997; 45: 182–192.

    Article  CAS  Google Scholar 

  21. Huang HW, Chiang YJ, Hung SI, Li CL, Yen JJ . An IL-7 splicing-defect lymphopenia mouse model revealed by genome-wide mutagenesis. J Biomed Sci 2007; 14: 169–181.

    Article  CAS  Google Scholar 

  22. Cook RF, Cook SJ, Even DL, Schaffer C, Issel CJ . Full-length and internally deleted forms of interleukin-7 are present in horse (Equus caballus) lymph node tissue. Vet Immunol Immunopathol 2008; 125: 126–134.

    Article  CAS  Google Scholar 

  23. Zhang Z, Duvefelt K, Svensson F, Masterman T, Jonasdottir G, Salter H et al. Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immun 2005; 6: 145–152.

    Article  CAS  Google Scholar 

  24. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357: 851–862.

    Article  CAS  Google Scholar 

  25. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 2007; 39: 1083–1091.

    Article  CAS  Google Scholar 

  26. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 2007; 39: 1108–1113.

    Article  CAS  Google Scholar 

  27. Resino S, Perez A, Leon JA, Gurbindo MD, Munoz-Fernandez MA . Interleukin-7 levels before highly active antiretroviral therapy may predict CD4+ T-cell recovery and virological failure in HIV-infected children. J Antimicrob Chemother 2006; 57: 798–800.

    Article  CAS  Google Scholar 

  28. Lambeck AJ, Crijns AP, Leffers N, Sluiter WJ, ten Hoor KA, Braid M et al. Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin 7. Clin Cancer Res 2007; 13: 2385–2391.

    Article  CAS  Google Scholar 

  29. Al-Rawi MA, Mansel RE, Jiang WG . Interleukin-7 (IL-7) and IL-7 receptor (IL-7R) signalling complex in human solid tumours. Histol Histopathol 2003; 18: 911–923.

    CAS  PubMed  Google Scholar 

  30. Al-Rawi MA, Rmali K, Mansel RE, Jiang WG . Interleukin 7 induces the growth of breast cancer cells through a wortmannin-sensitive pathway. Br J Surg 2004; 91: 61–68.

    Article  CAS  Google Scholar 

  31. Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM . Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 2007; 8: 349–357.

    Article  CAS  Google Scholar 

  32. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202: 907–912.

    Article  CAS  Google Scholar 

  33. Fry TJ, Mackall CL . Immune reconstitution following hematopoietic progenitor cell transplantation: challenges for the future. Bone Marrow Transplant 2005; 35 (Suppl 1): S53–S57.

    Article  Google Scholar 

  34. Khong HT, Rosenberg SA . The Waardenburg syndrome type 4 gene, SOX10, is a novel tumor-associated antigen identified in a patient with a dramatic response to immunotherapy. Cancer Res 2002; 62: 3020–3023.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Conrad C, Vianna C, Freeman M, Davies P . A polymorphic gene nested within an intron of the tau gene: implications for Alzheimer's disease. Proc Natl Acad Sci USA 2002; 99: 7751–7756.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Wolfgang Walter for screening cDNA for IL-7 transcripts and cloning, Professor Markus Heinemann, Department of Pediatric Cardiac Surgery, University of Mainz for provision of human thymic tissues, Professor E Jäger, Ludwig Institute for Cancer Research, Frankfurt, Germany for freshly harvested human tumor tissue and Professor H Pilch, Department of Gynecology, Mainz for analysis of tissue sections from patients with cervical cancer. Yen Ngo, MEB, Karolinska Institutet, Stockholm, Sweden for statistical analysis and Dr Sharon Kühlmann-Berenzon, SMI, Stockholm, Sweden for statistical advice. We are indebted to Professor Stoerkel and Dr Atkins, University of Wuppertal, Germany, for performing microdissection of thymic tissues. The study was supported by Karolinska Institutet and from a grant to MM from Cancerfonden, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Maeurer.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vudattu, N., Magalhaes, I., Hoehn, H. et al. Expression analysis and functional activity of interleukin-7 splice variants. Genes Immun 10, 132–140 (2009). https://doi.org/10.1038/gene.2008.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.90

Keywords

This article is cited by

Search

Quick links