Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conditional analyses on the T1DGC MHC dataset: novel associations with type 1 diabetes around HLA-G and confirmation of HLA-B

Abstract

The major histocompatibility complex (MHC) is known to harbour genetic risk factors for type 1 diabetes (T1D) additional to the class II determinants HLA-DRB1, -DQA1 and -DQB1, but strong linkage disequilibrium (LD) has made efforts to establish their location difficult. This study utilizes a dataset generated by the T1D genetics consortium (T1DGC), with genotypes for 2965 markers across the MHC in 2321 T1D families of multiple (mostly Caucasian) ethnicities. Using a comprehensive approach consisting of complementary conditional methods and LD analyses, we identified three regions with T1D association, independent both of the known class II determinants and of each other. A subset of polymorphisms that could explain most of the association in each region included single nucleotide polymorphisms (SNPs) in the vicinity of HLA-G, particular HLA-B and HLA-DPB1 alleles, and SNPs close to the COL11A2 and RING1 genes. Apart from HLA-B and HLA-DPB1, all of these represent novel associations, and subpopulation analyses did not indicate large population-specific differences among Caucasians for our findings. On account of the unusual genetic complexity of the MHC, further fine mapping is demanded, with the possible exception of HLA-B. However, our results mean that these efforts can be focused on narrow, defined regions of the MHC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Thomson G, Valdes AM, Noble JA, Kockum I, Grote MN, Najman J et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 2007; 70: 110–127.

    Article  CAS  PubMed  Google Scholar 

  2. Todd JA, Bell JI, McDevitt HO . HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987; 329: 599–604.

    Article  CAS  PubMed  Google Scholar 

  3. Sheehy MJ, Scharf SJ, Rowe JR, Neme de Gimenez MH, Meske LM, Erlich HA et al. A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles. J Clin Invest 1989; 83: 830–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA . The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996; 59: 1134–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889–899.

    Article  CAS  PubMed  Google Scholar 

  6. Aly TA, Baschal EE, Jahromi MM, Fernando MS, Babu SR, Fingerlin TE et al. Analysis of SNPs Identifies Major Type 1A Diabetes Locus Telomeric of the MHC. Diabetes 2008; 57: 770–776.

    Article  CAS  PubMed  Google Scholar 

  7. Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR et al. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci USA 2006; 103: 14074–14079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lie BA, Todd JA, Pociot F, Nerup J, Akselsen HE, Joner G et al. The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one non-class II gene. Am J Hum Genet 1999; 64: 793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nejentsev S, Gombos Z, Laine AP, Veijola R, Knip M, Simell O et al. Non-class II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B. Diabetes 2000; 49: 2217–2221.

    Article  CAS  PubMed  Google Scholar 

  10. Nejentsev S, Howson JM, Walker NM, Szeszko J, Field SF, Stevens HE et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007; 450: 887–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zavattari P, Lampis R, Motzo C, Loddo M, Mulargia A, Whalen M et al. Conditional linkage disequilibrium analysis of a complex disease superlocus, IDDM1 in the HLA region, reveals the presence of independent modifying gene effects influencing the type 1 diabetes risk encoded by the major HLA-DQB1, -DRB1 disease loci. Hum Mol Genet 2001; 10: 881–889.

    Article  CAS  PubMed  Google Scholar 

  12. Johansson S, Lie BA, Todd JA, Pociot F, Nerup J, Cambon-Thomsen A et al. Evidence of at least two type 1 diabetes susceptibility genes in the HLA complex distinct from HLA-DQB1, -DQA1 and -DRB1. Genes Immun 2003; 4: 46–53.

    Article  CAS  PubMed  Google Scholar 

  13. Rich SS, Concannon P, Erlich H, Julier C, Morahan G, Nerup J et al. The Type 1 Diabetes Genetics Consortium. Ann NY Acad Sci 2006; 1079: 1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Miretti MM, Walsh EC, Ke X, Delgado M, Griffiths M, Hunt S et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 2005; 76: 634–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yunis EJ, Larsen CE, Fernandez-Vina M, Awdeh ZL, Romero T, Hansen JA et al. Inheritable variable sizes of DNA stretches in the human MHC: conserved extended haplotypes and their fragments or blocks. Tissue Antigens 2003; 62: 1–20.

    Article  CAS  PubMed  Google Scholar 

  16. Degli-Esposti MA, Leaver AL, Christiansen FT, Witt CS, Abraham LJ, Dawkins RL . Ancestral haplotypes: conserved population MHC haplotypes. Hum Immunol 1992; 34: 242–252.

    Article  CAS  PubMed  Google Scholar 

  17. Alper CA, Awdeh Z, Yunis EJ . Conserved, extended MHC haplotypes. Exp Clin Immunogenet 1992; 9: 58–71.

    CAS  PubMed  Google Scholar 

  18. Aly TA, Eller E, Ide A, Gowan K, Babu SR, Erlich HA et al. Multi-SNP analysis of MHC region: remarkable conservation of HLA-A1-B8-DR3 haplotype. Diabetes 2006; 55: 1265–1269.

    Article  CAS  PubMed  Google Scholar 

  19. Blomhoff A, Olsson M, Johansson S, Akselsen HE, Pociot F, Nerup J et al. Linkage disequilibrium and haplotype blocks in the MHC vary in an HLA haplotype specific manner assessed mainly by DRB1*03 and DRB1*04 haplotypes. Genes Immun 2006; 7: 130–140.

    Article  CAS  PubMed  Google Scholar 

  20. Ahmad T, Neville M, Marshall SE, Armuzzi A, Mulcahy-Hawes K, Crawshaw J et al. Haplotype-specific linkage disequilibrium patterns define the genetic topography of the human MHC. Hum Mol Genet 2003; 12: 647–656.

    Article  CAS  PubMed  Google Scholar 

  21. Alper CA, Larsen CE, Dubey DP, Awdeh ZL, Fici DA, Yunis EJ . The haplotype structure of the human major histocompatibility complex. Hum Immunol 2006; 67: 73–84.

    Article  CAS  PubMed  Google Scholar 

  22. Pruitt KD, Tatusova T, Maglott DR . NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2007; 35 (database issue): D61–D65.

    Article  CAS  PubMed  Google Scholar 

  23. Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z, Billstrand C et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet 2005; 76: 349–357.

    Article  CAS  PubMed  Google Scholar 

  24. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 2007; 81: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cirulli V, Zalatan J, McMaster M, Prinsen R, Salomon DR, Ricordi C et al. The class I HLA repertoire of pancreatic islets comprises the nonclassical class Ib antigen HLA-G. Diabetes 2006; 55: 1214–1222.

    Article  CAS  PubMed  Google Scholar 

  26. Nejentsev S, Reijonen H, Adojaan B, Kovalchuk L, Sochnevs A, Schwartz EI et al. The effect of HLA-B allele on the IDDM risk defined by DRB1*04 subtypes and DQB 1*0302. Diabetes 1997; 46: 1888–1892.

    Article  CAS  PubMed  Google Scholar 

  27. Valdes AM, Erlich HA, Noble JA . Human leukocyte antigen class I B and C loci contribute to Type 1 Diabetes (T1D) susceptibility and age at T1D onset. Hum Immunol 2005; 66: 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bugawan TL, Klitz W, Alejandrino M, Ching J, Panelo A, Solfelix CM et al. The association of specific HLA class I and II alleles with type 1 diabetes among Filipinos. Tissue Antigens 2002; 59: 452–469.

    Article  CAS  PubMed  Google Scholar 

  29. Noble JA, Martin A, Valdes AM, Lane JA, Galgani A, Petrone A et al. Type 1 diabetes risk for human leukocyte antigen (HLA)-DR3 haplotypes depends on genotypic context: Association of DPB1 and HLA class I loci among DR3- and DR4-matched Italian patients and controls. Hum Immunol 2008; 69: 291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Jersey J, Snelgrove SL, Palmer SE, Teteris SA, Mullbacher A, Miller JF et al. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci USA 2007; 104: 1295–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kay TW, Parker JL, Stephens LA, Thomas HE, Allison J . RIP-beta 2-microglobulin transgene expression restores insulitis, but not diabetes, in beta 2-microglobulin null nonobese diabetic mice. J Immunol 1996; 157: 3688–3693.

    PubMed  Google Scholar 

  32. Utsugi T, Yoon JW, Park BJ, Imamura M, Averill N, Kawazu S et al. Major histocompatibility complex class I-restricted infiltration and destruction of pancreatic islets by NOD mouse-derived beta-cell cytotoxic CD8+ T-cell clones in vivo. Diabetes 1996; 45: 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  33. Sumida T, Furukawa M, Sakamoto A, Namekawa T, Maeda T, Zijlstra M et al. Prevention of insulitis and diabetes in beta 2-microglobulin-deficient non-obese diabetic mice. Int Immunol 1994; 6: 1445–1449.

    Article  CAS  PubMed  Google Scholar 

  34. Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC . Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant. Diabetes 1994; 43: 505–509.

    Article  CAS  PubMed  Google Scholar 

  35. Wicker LS, Leiter EH, Todd JA, Renjilian RJ, Peterson E, Fischer PA et al. Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 1994; 43: 500–504.

    Article  CAS  PubMed  Google Scholar 

  36. Roach JC, Deutsch K, Li S, Siegel AF, Bekris LM, Einhaus DC et al. Genetic mapping at 3-kilobase resolution reveals inositol 1,4,5-triphosphate receptor 3 as a risk factor for type 1 diabetes in sweden. Am J Hum Genet 2006; 79: 614–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qu HQ, Marchand L, Szymborski A, Grabs R, Polychronakos C . The association between type 1 diabetes and the ITPR3 gene polymorphism due to linkage disequilibrium with HLA class II. Genes Immun 2008; 9: 264–266.

    Article  CAS  PubMed  Google Scholar 

  38. Erlich HA, Rotter JI, Chang JD, Shaw SJ, Raffel LJ, Klitz W et al. Association of HLA-DPB1*0301 with IDDM in Mexican-Americans. Diabetes 1996; 45: 610–614.

    Article  CAS  PubMed  Google Scholar 

  39. Cruz TD, Valdes AM, Santiago A, Frazer de Llado T, Raffel LJ, Zeidler A et al. DPB1 alleles are associated with type 1 diabetes susceptibility in multiple ethnic groups. Diabetes 2004; 53: 2158–2163.

    Article  CAS  PubMed  Google Scholar 

  40. Noble JA, Valdes AM, Thomson G, Erlich HA . The HLA class II locus DPB1 can influence susceptibility to type 1 diabetes. Diabetes 2000; 49: 121–125.

    Article  CAS  PubMed  Google Scholar 

  41. Valdes AM, Noble JA, Genin E, Clerget-Darpoux F, Erlich HA, Thomson G . Modeling of HLA class II susceptibility to Type I diabetes reveals an effect associated with DPB1. Genet Epidemiol 2001; 21: 212–223.

    Article  CAS  PubMed  Google Scholar 

  42. Cucca F, Dudbridge F, Loddo M, Mulargia AP, Lampis R, Angius E et al. The HLA-DPB1—associated component of the IDDM1 and its relationship to the major loci HLA-DQB1, -DQA1, and -DRB1. Diabetes 2001; 50: 1200–1205.

    Article  CAS  PubMed  Google Scholar 

  43. Baschal EE, Aly TA, Babu SR, Fernando MS, Yu L, Miao D et al. HLA-DPB1*0402 protects against type 1A diabetes autoimmunity in the highest risk DR3-DQB1*0201/DR4-DQB1*0302 DAISY population. Diabetes 2007; 56: 2405–2409.

    Article  CAS  PubMed  Google Scholar 

  44. Lie BA, Akselsen HE, Joner G, Dahl-Jorgensen K, Ronningen KS, Thorsby E et al. HLA associations in insulin-dependent diabetes mellitus: no independent association to particular DP genes. Hum Immunol 1997; 55: 170–175.

    Article  CAS  PubMed  Google Scholar 

  45. Johansson S, Lie BA, Pociot F, Nerup J, Cambon-Thomsen A, Kockum I et al. HLA associations in type 1 diabetes: DPB1 alleles may act as markers of other HLA-complex susceptibility genes. Tissue Antigens 2003; 61: 344–351.

    Article  CAS  PubMed  Google Scholar 

  46. Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, Almeida J et al. Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project. Immunogenetics 2008; 60: 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cordell HJ, Barratt BJ, Clayton DG . Case/pseudocontrol analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet Epidemiol 2004; 26: 167–185.

    Article  PubMed  Google Scholar 

  48. Becker T, Knapp M . Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 2004; 27: 21–32.

    Article  PubMed  Google Scholar 

  49. The International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–796.

    Article  Google Scholar 

  50. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Undlien DE, Friede T, Rammensee HG, Joner G, Dahl-Jorgensen K, Sovik O et al. HLA-encoded genetic predisposition in IDDM: DR4 subtypes may be associated with different degrees of protection. Diabetes 1997; 46: 143–149.

    Article  CAS  PubMed  Google Scholar 

  52. Wigginton JE, Abecasis GR . PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21: 3445–3447.

    Article  CAS  PubMed  Google Scholar 

  53. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  55. Cordell HJ, Clayton DG . A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70: 124–141.

    Article  CAS  PubMed  Google Scholar 

  56. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  57. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research utilizes resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD) and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. MC Eike and BA Lie were supported by JDRF Grant 1-2004-793, by the Novo Nordisk Foundation and the Norwegian Diabetes Association. K Humphreys acknowledges support from the Swedish Research Council. M Olsson was supported by SSF Grant A3 02:129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Eike.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eike, M., Becker, T., Humphreys, K. et al. Conditional analyses on the T1DGC MHC dataset: novel associations with type 1 diabetes around HLA-G and confirmation of HLA-B. Genes Immun 10, 56–67 (2009). https://doi.org/10.1038/gene.2008.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.74

Keywords

This article is cited by

Search

Quick links