Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Defining a transcriptional fingerprint of murine splenic B-cell development

Abstract

B-cell development occurs in a stepwise fashion that can be followed by the expression of B cell-specific surface markers. In this study, we wished to identify proteins that could contribute to the changes in expression of such markers. By using RNA from freshly isolated B220+ cells, we hoped to reduce the effect of artifacts that occur during the isolation and amplification steps necessary to use flow cytometry analysis-sorted subsets in microarray experiments. Analyses comparing expression patterns from B220+ 2-week bone marrow (pro-B, pre-B, immature B cells), 2-week spleen (predominantly transitional cells) and 8-week spleen (mainly mature B cells) yielded hundreds of genes. We also examined the B cell-activating factor (BAFF)-dependent effects on immature splenic B cells by comparing expression patterns in the spleen between 2-week A/J vs 2-week A/WySnJ mice, which lack functional BAFF receptor signaling. Genes that showed the expression differences between spleen and bone marrow samples were then analyzed through quantitative PCR on B-cell subsets isolated using two different sorting protocols. A comparison of the results from our study with the results from other analyses showed not only some overlap of preferentially expressed genes but also an expansion of other genes potentially involved in B-cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Su TT, Rawlings DJ . Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. J Immunol 2002; 168: 2101–2110.

    Article  CAS  PubMed  Google Scholar 

  2. Busslinger M . Transcriptional control of early B cell development. Annu Rev Immunol 2004; 22: 55–79.

    Article  CAS  PubMed  Google Scholar 

  3. Allman DM, Ferguson SE, Cancro MP . Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J Immunol 1992; 149: 2533–2540.

    CAS  PubMed  Google Scholar 

  4. Allman DM, Ferguson SE, Lentz VM, Cancro MP . Peripheral B cell maturation. II. Heat-stable antigen(hi) splenic B cells are an immature developmental intermediate in the production of long-lived marrow-derived B cells. J Immunol 1993; 151: 4431–4444.

    CAS  PubMed  Google Scholar 

  5. Goodnow CC . Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA 1996; 93: 2264–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Melchers F . Anergic B cells caught in the act. Immunity 2006; 25: 864–867.

    Article  CAS  PubMed  Google Scholar 

  7. Russell DM, Dembic Z, Morahan G, Miller JF, Burki K, Nemazee D . Peripheral deletion of self-reactive B cells. Nature 1991; 354: 308–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kench JA, Russell DM, Nemazee D . Efficient peripheral clonal elimination of B lymphocytes in MRL/lpr mice bearing autoantibody transgenes. J Exp Med 1998; 188: 909–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carsetti R, Rosado MM, Wardmann H . Peripheral development of B cells in mouse and man. Immunol Rev 2004; 197: 179–191.

    Article  PubMed  Google Scholar 

  10. Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P, Torres R et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med 1999; 190: 75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR . Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol 2001; 167: 6834–6840.

    Article  CAS  PubMed  Google Scholar 

  12. Meyer-Bahlburg A, Andrews SF, Yu KO, Porcelli SA, Rawlings DJ . Characterization of a late transitional B cell population highly sensitive to BAFF-mediated homeostatic proliferation. J Exp Med 2008; 205: 155–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matthias P, Rolink AG . Transcriptional networks in developing and mature B cells. Nat Rev Immunol 2005; 5: 497–508.

    Article  CAS  PubMed  Google Scholar 

  14. Rolink AG, Tschopp J, Schneider P, Melchers F . BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol 2002; 32: 2004–2010.

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M . TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol 2004; 173: 2245–2252.

    Article  CAS  PubMed  Google Scholar 

  16. Gorelik L, Cutler AH, Thill G, Miklasz SD, Shea DE, Ambrose C et al. Cutting edge: BAFF regulates CD21/35 and CD23 expression independent of its B cell survival function. J Immunol 2004; 172: 762–766.

    Article  CAS  PubMed  Google Scholar 

  17. Lin KI, Angelin-Duclos C, Kuo TC, Calame K . Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol Cell Biol 2002; 22: 4771–4780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 2004; 21: 81–93.

    Article  CAS  PubMed  Google Scholar 

  19. Debnath I, Roundy KM, Weis JJ, Weis JH . Defining in vivo transcription factor complexes of the murine CD21 and CD23 genes. J Immunol 2007; 178: 7139–7150.

    Article  CAS  PubMed  Google Scholar 

  20. Tinnell SB, Jacobs-Helber SM, Sterneck E, Sawyer ST, Conrad DH . STAT6, NF-kappaB and C/EBP in CD23 expression and IgE production. Int Immunol 1998; 10: 1529–1538.

    Article  CAS  PubMed  Google Scholar 

  21. Visan I, Goller M, Berberich I, Kneitz C, Tony HP . Pax-5 is a key regulator of the B cell-restricted expression of the CD23a isoform. Eur J Immunol 2003; 33: 1163–1173.

    Article  CAS  PubMed  Google Scholar 

  22. Kneitz C, Goller M, Tony H, Simon A, Stibbe C, Konig T et al. The CD23b promoter is a target for NF-AT transcription factors in B-CLL cells. Biochim Biophys Acta 2002; 1588: 41–47.

    Article  CAS  PubMed  Google Scholar 

  23. Horcher M, Souabni A, Busslinger M . Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 2001; 14: 779–790.

    Article  CAS  PubMed  Google Scholar 

  24. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001; 293: 2111–2114.

    Article  CAS  PubMed  Google Scholar 

  25. Smith SH, Cancro MP . Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J Immunol 2003; 170: 5820–5823.

    Article  CAS  PubMed  Google Scholar 

  26. Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A . BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med 2006; 203: 2551–2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gross JA, Dillon SR, Mudri S, Johnston J, Littau A, Roque R et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity 2001; 15: 289–302.

    Article  CAS  PubMed  Google Scholar 

  28. Kayagaki N, Yan M, Seshasayee D, Wang H, Lee W, French DM et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002; 17: 515–524.

    Article  CAS  PubMed  Google Scholar 

  29. Claudio E, Brown K, Park S, Wang H, Siebenlist U . BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 2002; 3: 958–965.

    Article  CAS  PubMed  Google Scholar 

  30. Hatada EN, Do RK, Orlofsky A, Liou HC, Prystowsky M, MacLennan IC et al. NF-kappa B1 p50 is required for BLyS attenuation of apoptosis but dispensable for processing of NF-kappa B2 p100 to p52 in quiescent mature B cells. J Immunol 2003; 171: 761–768.

    Article  CAS  PubMed  Google Scholar 

  31. Morrison MD, Reiley W, Zhang M, Sun SC . An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-kappaB signaling pathway. J Biol Chem 2005; 280: 10018–10024.

    Article  CAS  PubMed  Google Scholar 

  32. Craxton A, Draves KE, Gruppi A, Clark EA . BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med 2005; 202: 1363–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 2001; 11: 1547–1552.

    Article  CAS  PubMed  Google Scholar 

  34. Amanna IJ, Dingwall JP, Hayes CE . Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. J Immunol 2003; 170: 4593–4600.

    Article  CAS  PubMed  Google Scholar 

  35. Lentz VM, Cancro MP, Nashold FE, Hayes CE . Bcmd governs recruitment of new B cells into the stable peripheral B cell pool in the A/WySnJ mouse. J Immunol 1996; 157: 598–606.

    CAS  PubMed  Google Scholar 

  36. Lentz VM, Hayes CE, Cancro MP . Bcmd decreases the life span of B-2 but not B-1 cells in A/WySnJ mice. J Immunol 1998; 160: 3743–3747.

    CAS  PubMed  Google Scholar 

  37. Miller DJ, Hayes CE . Phenotypic and genetic characterization of a unique B lymphocyte deficiency in strain A/WySnJ mice. Eur J Immunol 1991; 21: 1123–1130.

    Article  CAS  PubMed  Google Scholar 

  38. Debnath I, Roundy KM, Weis JJ, Weis JH . Analysis of the regulatory role of BAFF in controlling the expression of CD21 and CD23. Mol Immunol 2007; 44: 2388–2399.

    Article  CAS  PubMed  Google Scholar 

  39. Chang CH, Guerder S, Hong SC, van Ewijk W, Flavell RA . Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity 1996; 4: 167–178.

    Article  CAS  PubMed  Google Scholar 

  40. Srivastava B, Quinn III WJ, Hazard K, Erikson J, Allman D . Characterization of marginal zone B cell precursors. J Exp Med 2005; 202: 1225–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crandall H, Dunn DM, Ma Y, Wooten RM, Zachary JF, Weis JH et al. Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis. J Immunol 2006; 177: 7930–7942.

    Article  CAS  PubMed  Google Scholar 

  42. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  PubMed  Google Scholar 

  43. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gautier L, Cope L, Bolstad BM, Irizarry RA . affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307–315.

    Article  CAS  PubMed  Google Scholar 

  45. Tan SS, Weis JH . Development of a sensitive reverse transcriptase PCR assay, RT-RPCR, utilizing rapid cycle times. Genome Res 1992; 2: 137–143.

    Article  CAS  Google Scholar 

  46. Terahara K, Yoshida M, Igarashi O, Nochi T, Pontes GS, Hase K et al. Comprehensive gene expression profiling of Peyer's Patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol 2008; 180: 7840–7846.

    Article  CAS  PubMed  Google Scholar 

  47. Bhattacharya D, Cheah MT, Franco CB, Hosen N, Pin CL, Sha WC et al. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation. J Immunol 2007; 179: 6808–6819.

    Article  CAS  PubMed  Google Scholar 

  48. Kin NW, Crawford DM, Liu J, Behrens TW, Kearney JF . DNA microarray gene expression profile of marginal zone versus follicular B cells and idiotype positive marginal zone B cells before and after immunization with Streptococcus pneumoniae. J Immunol 2008; 180: 6663–6674.

    Article  CAS  PubMed  Google Scholar 

  49. Lindvall JM, Blomberg KE, Berglof A, Smith CI . Distinct gene expression signature in Btk-defective T1 B-cells. Biochem Biophys Res Commun 2006; 346: 461–469.

    Article  CAS  PubMed  Google Scholar 

  50. Hoffmann R, Seidl T, Neeb M, Rolink A, Melchers F . Changes in gene expression profiles in developing B cells of murine bone marrow. Genome Res 2002; 12: 98–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Haaften RI, Schroen B, Janssen BJ, van Erk A, Debets JJ, Smeets HJ et al. Biologically relevant effects of mRNA amplification on gene expression profiles. BMC Bioinformatics 2006; 7: 200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B . Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest 2002; 109: 1625–1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fink K, Manjarrez-Orduno N, Schildknecht A, Weber J, Senn BM, Zinkernagel RM et al. B cell activation state-governed formation of germinal centers following viral infection. J Immunol 2007; 179: 5877–5885.

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki A, Kaisho T, Ohishi M, Tsukio-Yamaguchi M, Tsubata T, Koni PA et al. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J Exp Med 2003; 197: 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuroda K, Han H, Tani S, Tanigaki K, Tun T, Furukawa T et al. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 2003; 18: 301–312.

    Article  CAS  PubMed  Google Scholar 

  56. Shahaf G, Allman D, Cancro MP, Mehr R . Screening of alternative models for transitional B cell maturation. Int Immunol 2004; 16: 1081–1090.

    Article  CAS  PubMed  Google Scholar 

  57. Reith W, LeibundGut-Landmann S, Waldburger JM . Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 2005; 5: 793–806.

    Article  CAS  PubMed  Google Scholar 

  58. Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O, Schwarz JJ et al. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol 2008; 9: 603–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zabel MD, Weis JH . Cell-specific regulation of the CD21 gene. Int Immunopharmacol 2001; 1: 483–493.

    Article  CAS  PubMed  Google Scholar 

  60. Schweitzer BL, Huang KJ, Kamath MB, Emelyanov AV, Birshtein BK, DeKoter RP . Spi-C has opposing effects to PU.1 on gene expression in progenitor B cells. J Immunol 2006; 177: 2195–2207.

    Article  CAS  PubMed  Google Scholar 

  61. Bemark M, Martensson A, Liberg D, Leanderson T . Spi-C, a novel Ets protein that is temporally regulated during B lymphocyte development. J Biol Chem 1999; 274: 10259–10267.

    Article  CAS  PubMed  Google Scholar 

  62. Carlsson R, Thorell K, Liberg D, Leanderson T . SPI-C and STAT6 can cooperate to stimulate IgE germline transcription. Biochem Biophys Res Commun 2006; 344: 1155–1160.

    Article  CAS  PubMed  Google Scholar 

  63. Martin JF, Schwarz JJ, Olson EN . Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc Natl Acad Sci USA 1993; 90: 5282–5286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Swanson BJ, Jack HM, Lyons GE . Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol Immunol 1998; 35: 445–458.

    Article  CAS  PubMed  Google Scholar 

  65. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ . Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 1997; 386: 296–299.

    Article  CAS  PubMed  Google Scholar 

  66. Whiteman HJ, Farrell PJ . RUNX expression and function in human B cells. Crit Rev Eukaryot Gene Expr 2006; 16: 31–44.

    Article  CAS  PubMed  Google Scholar 

  67. Spender LC, Whiteman HJ, Karstegl CE, Farrell PJ . Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells. Oncogene 2005; 24: 1873–1881.

    Article  CAS  PubMed  Google Scholar 

  68. Tao RH, Kawate H, Ohnaka K, Ishizuka M, Hagiwara H, Takayanagi R . Opposite effects of alternative TZF spliced variants on androgen receptor. Biochem Biophys Res Commun 2006; 341: 515–521.

    Article  CAS  PubMed  Google Scholar 

  69. Ishizuka M, Kawate H, Takayanagi R, Ohshima H, Tao RH, Hagiwara H . A zinc finger protein TZF is a novel corepressor of androgen receptor. Biochem Biophys Res Commun 2005; 331: 1025–1031.

    Article  CAS  PubMed  Google Scholar 

  70. Inoue A, Ishiji A, Kasagi S, Ishizuka M, Hirose S, Baba T et al. The transcript for a novel protein with a zinc finger motif is expressed at specific stages of mouse spermatogenesis. Biochem Biophys Res Commun 2000; 273: 398–403.

    Article  CAS  PubMed  Google Scholar 

  71. Ishizuka M, Ohshima H, Tamura N, Nakada T, Inoue A, Hirose S et al. Molecular cloning and characteristics of a novel zinc finger protein and its splice variant whose transcripts are expressed during spermatogenesis. Biochem Biophys Res Commun 2003; 301: 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  72. Roth C, Schuierer M, Gunther K, Buettner R . Genomic structure and DNA binding properties of the human zinc finger transcriptional repressor AP-2rep (KLF12). Genomics 2000; 63: 384–390.

    Article  CAS  PubMed  Google Scholar 

  73. Ulgiati D, Subrata LS, Abraham LJ . The role of Sp family members, basic Kruppel-like factor, and E box factors in the basal and IFN-gamma regulated expression of the human complement C4 promoter. J Immunol 2000; 164: 300–307.

    Article  CAS  PubMed  Google Scholar 

  74. Turner J, Crossley M . Basic Kruppel-like factor functions within a network of interacting haematopoietic transcription factors. Int J Biochem Cell Biol 1999; 31: 1169–1174.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang P, Basu P, Redmond LC, Morris PE, Rupon JW, Ginder GD et al. A functional screen for Kruppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Blood Cells Mol Dis 2005; 35: 227–235.

    Article  CAS  PubMed  Google Scholar 

  76. Parker MH, Perry RL, Fauteux MC, Berkes CA, Rudnicki MA . MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation. Mol Cell Biol 2006; 26: 5771–5783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Quong MW, Romanow WJ, Murre C . E protein function in lymphocyte development. Annu Rev Immunol 2002; 20: 301–322.

    Article  CAS  PubMed  Google Scholar 

  78. Zhuang Y, Cheng P, Weintraub H . B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol 1996; 16: 2898–2905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sawada S, Littman DR . A heterodimer of HEB and an E12-related protein interacts with the CD4 enhancer and regulates its activity in T-cell lines. Mol Cell Biol 1993; 13: 5620–5628.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gilks CB, Bear SE, Grimes HL, Tsichlis PN . Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol Cell Biol 1993; 13: 1759–1768.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004; 431: 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  82. Zeng H, Yucel R, Kosan C, Klein-Hitpass L, Moroy T . Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J 2004; 23: 4116–4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, Cameron S et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 2003; 18: 109–120.

    Article  CAS  PubMed  Google Scholar 

  84. Rathinam C, Klein C . Transcriptional repressor Gfi1 integrates cytokine-receptor signals controlling B-cell differentiation. PLoS ONE 2007; 2: e306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sharrocks AD . The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001; 2: 827–837.

    Article  CAS  PubMed  Google Scholar 

  86. Iwamoto M, Tamamura Y, Koyama E, Komori T, Takeshita N, Williams JA et al. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol 2007; 305: 40–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH et al. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 2002; 21: 148–152.

    Article  CAS  PubMed  Google Scholar 

  88. Logan N, Delavaine L, Graham A, Reilly C, Wilson J, Brummelkamp TR et al. E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains. Oncogene 2004; 23: 5138–5150.

    Article  CAS  PubMed  Google Scholar 

  89. Di Stefano L, Jensen MR, Helin K . E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J 2003; 22: 6289–6298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Bruin A, Maiti B, Jakoi L, Timmers C, Buerki R, Leone G . Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem 2003; 278: 42041–42049.

    Article  CAS  PubMed  Google Scholar 

  91. Maiti B, Li J, de Bruin A, Gordon F, Timmers C, Opavsky R et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem 2005; 280: 18211–18220.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Utah FACS and Oligonucleotide Core Facilities for their assistance. We also thank Dr Peter Jensen for providing the C2ta-deficient animals. We sincerely acknowledge the technical help and suggestions from Dr Wayne Green for assistance in the isolation of B-cell subsets. Finally, we also thank all the members of our laboratories for their insightful critiques of this work.

This work was supported by grants from the National Institute of Allergy and Infectious Diseases (AI-24158, JHW: AI-32223, JJW). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Institute of Allergy and Infectious Diseases or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Weis.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debnath, I., Roundy, K., Dunn, D. et al. Defining a transcriptional fingerprint of murine splenic B-cell development. Genes Immun 9, 706–720 (2008). https://doi.org/10.1038/gene.2008.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.70

Keywords

Search

Quick links