Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Variation in the ICAM1 gene is not associated with severe malaria phenotypes

Abstract

Evidence from autopsy and in vitro binding studies suggests that adhesion of erythrocytes infected with Plasmodium falciparum to the human host intercellular adhesion molecule (ICAM)-1 receptor is important in the pathogenesis of severe malaria. Previous association studies between polymorphisms in the ICAM1 gene and susceptibility to severe malarial phenotypes have been inconclusive and often contradictory. We performed genetic association studies with 15 single nucleotide polymorphisms (SNPs) around the ICAM1 locus. All SNPs were screened in a family study of 1071 trios from The Gambia, Malawi and Kenya. Two key non-synonymous SNPs with previously reported associations, rs5491 (K56M or ‘ICAM-1Kilifi’) and rs5498 (K469E), were tested in an additional 708 Gambian trios and a case-control study of 4058 individuals. None of the polymorphisms were associated with severe malaria phenotypes. Pooled results across our studies for ICAM-1Kilifi were, in severe malaria, odds ratio (OR) 1.02, 95% confidence interval (CI) 0.96–1.09, P=0.54, and cerebral malaria OR 1.07, CI 0.97–1.17, P=0.17. We assess the available epidemiological, population genetic and functional evidence that links ICAM-1Kilifi to severe malaria susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Newbold C, Craig A, Kyes S, Rowe A, Fernandez-Reyes D, Fagan T . Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol 1999; 29: 927–937.

    Article  CAS  Google Scholar 

  2. Berendt AR, Tumer GD, Newbold CI . Cerebral malaria: the sequestration hypothesis. Parasitol Today 1994; 10: 412–414.

    Article  CAS  Google Scholar 

  3. van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE . A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 2006; 22: 503–508.

    Article  CAS  Google Scholar 

  4. Chen Q, Schlichtherle M, Wahlgren M . Molecular aspects of severe malaria. Clin Microbiol Rev 2000; 13: 439–450.

    Article  CAS  Google Scholar 

  5. Smith JD, Craig AG, Kriek N, Hudson-Taylor D, Kyes S, Fagen T et al. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc Natl Acad Sci USA 2000; 97: 1766–1771.

    Article  CAS  Google Scholar 

  6. Ockenhouse CF, Betageri R, Springer TA, Staunton DE . Plasmodium falciparum-infected erythrocytes bind ICAM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus. Cell 1992; 68: 63–69.

    Article  CAS  Google Scholar 

  7. Porta J, Carota A, Pizzolato GP, Wildi E, Widmer MC, Margairaz C et al. Immunopathological changes in human cerebral malaria. Clin Neuropathol 1993; 12: 142–146.

    CAS  PubMed  Google Scholar 

  8. Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 1994; 145: 1057–1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Armah H, Dodoo AK, Wiredu EK, Stiles JK, Adjei AA, Gyasi RK et al. High-level cerebellar expression of cytokines and adhesion molecules in fatal, paediatric, cerebral malaria. Ann Trop Med Parasitol 2005; 99: 629–647.

    Article  CAS  Google Scholar 

  10. Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 1999; 155: 395–410.

    Article  CAS  Google Scholar 

  11. Newbold C, Warn P, Black G, Berendt A, Craig A, Snow B et al. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg 1997; 57: 389–398.

    Article  CAS  Google Scholar 

  12. Rogerson SJ, Tembenu R, Dobano C, Plitt S, Taylor TE, Molyneux ME . Cytoadherence characteristics of Plasmodium falciparum-infected erythrocytes from Malawian children with severe and uncomplicated malaria. Am J Trop Med Hyg 1999; 61: 467–472.

    Article  CAS  Google Scholar 

  13. Heddini A, Pettersson F, Kai O, Shafi J, Obiero J, Chen Q et al. Fresh isolates from children with severe Plasmodium falciparum malaria bind to multiple receptors. Infect Immun 2001; 69: 5849–5856.

    Article  CAS  Google Scholar 

  14. Dietrich JB . The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J Neuroimmunol 2002; 128: 58–68.

    Article  CAS  Google Scholar 

  15. Marlin SD, Springer TA . Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 1987; 51: 813–819.

    Article  CAS  Google Scholar 

  16. Baratin M, Roetynck S, Pouvelle B, Lemmers C, Viebig NK, Johansson S et al. Dissection of the role of PfEMP1 and ICAM-1 in the sensing of Plasmodium falciparum-infected erythrocytes by natural killer cells. PLoS ONE 2007; 2: e228.

    Article  Google Scholar 

  17. Languino LR, Plescia J, Duperray A, Brian AA, Plow EF, Geltosky JE et al. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 1993; 73: 1423–1434.

    Article  CAS  Google Scholar 

  18. Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML et al. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 1990; 111: 3129–3139.

    Article  CAS  Google Scholar 

  19. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA . A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 1989; 56: 849–853.

    Article  CAS  Google Scholar 

  20. Fernandez-Reyes D, Craig AG, Kyes SA, Peshu N, Snow RW, Berendt AR et al. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum Mol Genet 1997; 6: 1357–1360.

    Article  CAS  Google Scholar 

  21. Kun JF, Klabunde J, Lell B, Luckner D, Alpers M, May J et al. Association of the ICAM-1Kilifi mutation with protection against severe malaria in Lambarene, Gabon. Am J Trop Med Hyg 1999; 61: 776–779.

    Article  CAS  Google Scholar 

  22. Bellamy R, Kwiatkowski D, Hill AV . Absence of an association between intercellular adhesion molecule 1, complement receptor 1 and interleukin 1 receptor antagonist gene polymorphisms and severe malaria in a West African population. Trans R Soc Trop Med Hyg 1998; 92: 312–316.

    Article  CAS  Google Scholar 

  23. Ohashi J, Naka I, Patarapotikul J, Hananantachai H, Looareesuwan S, Tokunaga K . Absence of association between the allele coding methionine at position 29 in the N-terminal domain of ICAM-1 (ICAM-1(Kilifi)) and severe malaria in the northwest of Thailand. Jpn J Infect Dis 2001; 54: 114–116.

    CAS  PubMed  Google Scholar 

  24. Ndiaye R, Sakuntabhai A, Casademont I, Rogier C, Tall A, Trape JF et al. Genetic study of ICAM1 in clinical malaria in Senegal. Tissue Antigens 2005; 65: 474–480.

    Article  CAS  Google Scholar 

  25. Amodu OK, Gbadegesin RA, Ralph SA, Adeyemo AA, Brenchley PE, Ayoola OO et al. Plasmodium falciparum malaria in south-west Nigerian children: is the polymorphism of ICAM-1 and E-selectin genes contributing to the clinical severity of malaria? Acta Trop 2005; 95: 248–255.

    Article  CAS  Google Scholar 

  26. Ayodo G, Price AL, Keinan A, Ajwang A, Otieno MF, Orago AS et al. Combining evidence of natural selection with association analysis increases power to detect malaria-resistance variants. Am J Hum Genet 2007; 81: 234–242.

    Article  CAS  Google Scholar 

  27. Jenkins NE, Mwangi TW, Kortok M, Marsh K, Craig AG, Williams TN . A polymorphism of intercellular adhesion molecule-1 is associated with a reduced incidence of nonmalarial febrile illness in Kenyan children. Clin Infect Dis 2005; 41: 1817–1819.

    Article  CAS  Google Scholar 

  28. Cordell HJ, Barratt BJ, Clayton DG . Case/pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet Epidemiol 2004; 26: 167–185.

    Article  Google Scholar 

  29. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G et al. Replicating genotype-phenotype associations. Nature 2007; 447: 655–660.

    Article  CAS  Google Scholar 

  30. Adams S, Turner GD, Nash GB, Micklem K, Newbold CI, Craig AG . Differential binding of clonal variants of Plasmodium falciparum to allelic forms of intracellular adhesion molecule 1 determined by flow adhesion assay. Infect Immun 2000; 68: 264–269.

    Article  CAS  Google Scholar 

  31. Tse MT, Chakrabarti K, Gray C, Chitnis CE, Craig A . Divergent binding sites on intercellular adhesion molecule-1 (ICAM-1) for variant Plasmodium falciparum isolates. Mol Microbiol 2004; 51: 1039–1049.

    Article  CAS  Google Scholar 

  32. International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  33. Ma J, Mollsten A, Falhammar H, Brismar K, Dahlquist G, Efendic S et al. Genetic association analysis of the adiponectin polymorphisms in type 1 diabetes with and without diabetic nephropathy. J Diabetes Complications 2007; 21: 28–33.

    Article  Google Scholar 

  34. Register TC, Burdon KP, Lenchik L, Bowden DW, Hawkins GA, Nicklas BJ et al. Variability of serum soluble intercellular adhesion molecule-1 measurements attributable to a common polymorphism. Clin Chem 2004; 50: 2185–2187.

    Article  CAS  Google Scholar 

  35. Walsh EC, Sabeti P, Hutcheson HB, Fry B, Schaffner SF, de Bakker PI et al. Searching for signals of evolutionary selection in 168 genes related to immune function. Hum Genet 2006; 119: 92–102.

    Article  CAS  Google Scholar 

  36. Voight BF, Kudaravalli S, Wen X, Pritchard JK . A map of recent positive selection in the human genome. PLoS Biol 2006; 4: e72.

    Article  Google Scholar 

  37. Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M . Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. Proc Natl Acad Sci USA 2003; 100: 7181–7188.

    Article  CAS  Google Scholar 

  38. Casasnovas JM, Stehle T, Liu JH, Wang JH, Springer TA . A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc Natl Acad Sci USA 1998; 95: 4134–4139.

    Article  CAS  Google Scholar 

  39. Staunton DE, Dustin ML, Erickson HP, Springer TA . The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 1990; 61: 243–254.

    Article  CAS  Google Scholar 

  40. Register RB, Uncapher CR, Naylor AM, Lineberger DW, Colonno RJ . Human-murine chimeras of ICAM-1 identify amino acid residues critical for rhinovirus and antibody binding. J Virol 1991; 65: 6589–6596.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Craig A, Fernandez-Reyes D, Mesri M, McDowall A, Altieri DC, Hogg N et al. A functional analysis of a natural variant of intercellular adhesion molecule-1 (ICAM-1Kilifi). Hum Mol Genet 2000; 9: 525–530.

    Article  CAS  Google Scholar 

  42. Xiao C, Tuthill TJ, Bator Kelly CM, Challinor LJ, Chipman PR, Killington RA et al. Discrimination among rhinovirus serotypes for a variant ICAM-1 receptor molecule. J Virol 2004; 78: 10034–10044.

    Article  CAS  Google Scholar 

  43. Fry AE, Griffiths MJ, Auburn S, Diakite M, Forton JT, Green A et al. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria. Hum Mol Genet 2008; 17: 567–576.

    Article  CAS  Google Scholar 

  44. Severe and complicated malaria. World Health Organization, Division of Control of Tropical Diseases. Trans R Soc Trop Med Hyg 1990; 84 (Suppl 2): 1–65.

    Google Scholar 

  45. Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, Marsh V et al. Indicators of life-threatening malaria in African children. N Engl J Med 1995; 332: 1399–1404.

    Article  CAS  Google Scholar 

  46. Purcell S, Cherny SS, Sham PC . Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149–150.

    Article  CAS  Google Scholar 

  47. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N . Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA 1992; 89: 5847–5851.

    Article  CAS  Google Scholar 

  48. Gonzalez JM, Portillo MC, Saiz-Jimenez C . Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environments. Environ Microbiol 2005; 7: 1024–1028.

    Article  CAS  Google Scholar 

  49. Ross P, Hall L, Smirnov I, Haff L . High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat Biotechnol 1998; 16: 1347–1351.

    Article  CAS  Google Scholar 

  50. Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM . Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004; 26: 61–69.

    Article  Google Scholar 

  51. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19 (Suppl 1): S36–S42.

    Article  Google Scholar 

  52. Dudbridge F . Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 2008; 66: 87–98.

    Article  Google Scholar 

  53. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a Wellcome Trust Clinical Research Training Fellowship (to AEF) and the UK Medical Research Council (to DPK). This manuscript is published with the permission of the director of the Kenya Medical Research Institute. TW was funded by the Wellcome Trust, MalariaGEN and the European Union Network 6 BioMalPar Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A E Fry.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fry, A., Auburn, S., Diakite, M. et al. Variation in the ICAM1 gene is not associated with severe malaria phenotypes. Genes Immun 9, 462–469 (2008). https://doi.org/10.1038/gene.2008.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.38

Keywords

This article is cited by

Search

Quick links