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Abstract

Purpose The purpose of the present study is
to develop fast automated quantification of
retinal fluid in optical coherence tomography
(OCT) image sets.
Methods We developed an image analysis
pipeline tailored towards OCT images that
consists of five steps for binary retinal fluid
segmentation. The method is based on feature
extraction, pre-segmention, dimension reduction
procedures, and supervised learning tools.
Results Fluid identification using our
pipeline was tested on two separate patient
groups: one associated to neovascular age-
related macular degeneration, the other
showing diabetic macular edema. For training
and evaluation purposes, retinal fluid was
annotated manually in each cross-section by
human expert graders of the Vienna Reading
Center. Compared with the manual
annotations, our pipeline yields good
quantification, visually and in numbers.
Conclusions By demonstrating good
automated retinal fluid quantification, our
pipeline appears useful to expert graders
within their current grading processes. Owing
to dimension reduction, the actual learning part
is fast and requires only few training samples.
Hence, it is well-suited for integration into
actual manufacturer’s devices, further
improving segmentation by its use in daily
clinical life.
Eye (2017) 31, 1212–1220; doi:10.1038/eye.2017.61;
published online 21 April 2017

Introduction

Spectral-domain optical coherence tomography
(OCT) is nowadays the most frequently used

retinal imaging technique in ophthalmology.
It provides good visualization of subretinal
and intraretinal cystoid fluid. Especially
distinguishing between fluid and no fluid or a
fluid increase or decrease between two visits is
important for the administration of anti-vascular
endothelial growth factor therapy. However,
automated quantification of retinal fluid in OCT
images goes beyond evaluation algorithms
provided by manufacturers. When considering
that a regular OCT raster scan has between 128
and 1024 B-scans, this can be tedious and
beyond possibilities of every day clinical routine
( cf. Schmidt-Erfuth et al1).
Owing to increased computing power, state-

of-the-art methods for several learning tasks
related to image analysis in the applied sciences
are deep neural networks (NNs).2 Deep
convolutional NNs, in particular, have already
been applied to fluid quantification in OCT
images (cf. Schlegl3). Deep learning models have
several drawbacks, such as the need for huge
amounts of training data, high training time,
large memory usage, and the complicated
design of a suitable network. A semi-supervised
technique was developed by Zheng et al.4

(see also Chen et al,5 Xu et al,6 and Wilkins et al;7

for general learning techniques, we refer to
Grady,8 Czaja and Ehler,9 Schölkopf and
Smola,10 and Roweis and Saul11). Here we shall
provide an efficient method with a fast learning
part and low memory needs based on dimension
reduction techniques. Moreover, it shall be easy
to implement, requires only few training data,
and yields good fluid quantification. To meet
clinical needs, we present a fully automated
image analysis pipeline tailored to fluid
quantification in OCT raster image sets. The
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pipeline is built by five steps that are guided by the
principle of dimension reduction. Our resulting binary
segmentations are compared with the manual annotations
of the expert graders visually and in numbers, illustrating
the strengths and weaknesses of our approach. The
innovative aspect of our approach is the combination of
local and global features in dimension reduction
techniques together with learning methods. Our approach
presents a model applicable for clinical routine and could
be implemented into a OCT device for its every day use.

Methods

The method is designed for a collection of 3D OCT
volumes. For training and evaluation purposes, retinal
fluid was annotated manually in each cross-section by
human expert graders of the Vienna Reading Center
(VRC). Guaranteeing unbiased evaluation, the data were
annotated before the development of the pipeline and
hence independently analyzed. As manual annotation is
very time consuming (~15 h per volume), there are few
training data available, that is, binary annotations of
retinal fluid in few cross-sections, which enable the
application of supervised learning techniques.
Our image analysis pipeline is built up from five steps.

To reduce computation costs and minimize required
training data, we focus on the extraction of the necessary
image information contents before entering the learning
stages. More specifically, (1) we compute local features for
each B-scan that enhance specific image characteristics,
while inheriting effective denoising. For each OCT B-scan,
we compute two local features. One results from Gabor
filtering12 and the other one as the solution of a
variational minimization problem13 resulting in a
piecewise smooth image. These two local features form a
vector-valued image (cf. Local features). (2) We replace
each B-scan with the piecewise constant solution of
another variational energy minimization problem,14

whose input is the vector-valued image. This solution is
considered as a pre-segmentation, in which darker
piecewise constant areas appear to be associated with
retinal fluid (cf. Dimension reduction I: pre-
segmentation). We now aim to select those areas by
automated learning an appropriate threshold for each
cross-section, such that segments with pixel values
underneath the threshold represent the fluid. To minimize
computation costs and reduce the required training data
in the learning process, (3) we compute four global
parameters of each cross-section (cf. Dimension
reduction II). (4) We now apply three standard learning
tools (regression, decision trees, and NNs) to estimate the
thresholds from these parameters based on few randomly
selected manual annotations of expert graders serving as
training samples (cf. Supervised learning of the

thresholds). We then evaluate the trained learning models
on the global parameters of each B-scan of the remaining
test samples. (5) Once the thresholds are estimated, we
use them to threshold the piecewise constant pre-
segmentation images obtaining the final identification of
retinal fluid areas (cf. Thresholding). Steps 2 and 3 are
significant dimension reduction processes enabling faster
learning with fewer training data. We run through these
five steps for each 2D cross-sectional image
independently, yielding the following analysis pipeline:

K Local features (pixel-level):
Compute two features for each B-scan, yielding
vector-valued images.

K Dimension reduction I (pre-segmentation):
Use these vector-valued images to replace each B-scan
with the piecewise constant solution of an energy
minimization problem.

K Dimension reduction II:
Represent each B-scan by few global features (image
level).

K Learning thresholds:
From these global features estimate the thresholds via
standard learning tools.

K Thresholding:
Each piecewise constant B-scan is thresholded to
obtain the final classification of the fluid spaces.

Local features

We extract two local features of each B-scan (see the
first two images in Figure 1). One feature image is
obtained from Gabor filtering (see Supplementary
Equation 1). Gabor filters are well-suited for texture
analysis;12 see also Soares et al15 for applications in retinal
image analysis. The second feature is obtained from the
Rudin–Osher–Fatemi variational energy minimization13

(see Supplementary Equations 2 and 3). Its solution is a
piecewise smooth image, that is, edges are preserved and
regions between interfaces are smoothed.

Dimension reduction I: pre-segmentation

We now use the vector-valued feature images to replace
each B-scan with the piecewise constant solution of another
variational energy minimization problem, (see Supple-
mentary Equation 4 and cf. Mumford and Shah,16 and
Potts.17 We minimize a discrete domain version (see
Supplementary Equation 5) by using the Pottslab matlab
code from the website http://www.pottslab.de (cf. Storath
andWeinmann14), where an alternating direction method of
multipliers is used.
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It is noteworthy that the minimizer is again a vector-
valued image. We use the second channel of the piecewise
constant image, which corresponds to the Rudin–Osher–
Fatemi model, see Figure 2. Indeed it yields
pre-segmentations in which retinal fluid appears as dark
regions and boundaries seem preserved well. Thus, it
seems reasonable to threshold the piecewise constant
image to divide the piecewise constant images in two
regions: white (presence of retinal fluid) and black
(absence). As annotations from human graders are
available, supervised learning techniques can be used to
estimate the magnitude of appropriate thresholds.

Dimension reduction II

In order to learn the thresholds, we need to specify the
parameters of the piecewise constant image that actually
characterize the thresholds magnitude. We observed that
the threshold is mainly influenced by few global image
parameters (mean, variance, infimum, and median).
Therefore, we associate just these four global features of
the region of interest (ROI) with each piecewise constant
image that are used as input for subsequent learning.

Supervised learning of the thresholds

We split our cross-sections into training and test samples.
As training data, we use few randomly chosen 2D slices

and test it on all remaining cross-sections. First, we
manually determine thresholds ti∈ [0, 1] as target values,
based on the optimal fit with the graders’ annotations.
To estimate thresholds from four global features (see

Dimension reduction II), we make use of three learning
techniques: regression, random forest, and three-layer NNs
(cf. Bishop,18 and Witten and Frank19 for more details). The
target thresholds {ti} are used to train these learning models.
We obtain the remaining thresholds for the test data set,
which is disjoint from the training data, by evaluating the
trained learning model on the global features of the test
samples. The machine learning and NN toolbox of
MatlabR2015a is used for the learning computations.

Thresholding

The last step of our pipeline is to threshold all the computed
pre-segmentations (see Dimension reduction I: pre-
segmentation) of the test set by the evaluated thresholds.
Those segments with values less than the threshold are
classified as retinal fluid (see right image in Figure 1).

Test data

Our proposed analysis pipeline is tested on imaging data
provided by the VRC. The VRC has analyzed millions of
images, mainly from OCT, recorded in multi-center
clinical trials with many hundred different study sites all

Figure 2 The first and third images show original cross-sections, and the second and fourth the corresponding piece-wise constant
images, which are the basis for the supervised learning (see Dimension reduction I: pre-segmentation).

Figure 1 Example image showing results after Step 1 (a and b), 2 (c), and 5 (d) of the pipeline (described in Local features, Dimension
reduction I: presegmentation, and Thresholding).
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over the world in a standardized manner over the past
decade. We shall work here with two separate OCT data
sets, the first corresponds to 38 patients suffering from
neovascular age-related macular degeneration (AMD),
where OCT images are taken at the very start of the
treatment initiation (ie, all are baseline images). The
second data set relates to 16 patients suffering from
diabetic macular edema (DME) with different severity of
edema selected randomly from a trial database within the
VRC. All OCT images were recorded by a Cirrus OCT
camera (Carl Zeiss Meditec, Dublin, CA, USA). We will
test the pipeline on both data sets independently.

Results

For each patient of the two data sets, the recorded retinal
image data yields a three-dimensional (1024×512×128)
matrix, that is, the volume data consists of 128 cross-
sectional images of one patient’s retina of one eye each of
the size (1024×512). We cut out scaled images of the size
(512×512) that include the ROI, that is, the region between
the inner limiting membrane and the pigment epithelium
cells, which is the retina (see Garvin et al20 and Haeker et al21

for retinal layer segmentation). This halves the amount of
pixels of each 2D image without loosing any information.
Retinal fluid was annotated in each of the 4864=38 * 128
and 2048= 16 * 128 cross-sections manually by human
expert graders of the VRC, provided as binary image sets.
Using professional drawing tablets, all annotations were
performed B-scan-wise. The time required to annotate a
typical OCT volume was ~15 h. In total, five readers and
three board-certified supervisors, who corrected errors if
required, participated in the annotation procedure. Each
reader underwent a standardized training before annotating
the study data set (see Waldstein et al22 and
Varnousfaderani et al23 for more details).
The results of our fully automated quantification of

subretinal and intraretinal cystoid fluid highly depend on

the quality of the piece-wise constant pre-segmentation.
Table 1 shows good binary segmentation outcomes for both
data sets when we use the optimal threshold on the piece-
wise constant training data and compare it with the graders’
annotations. It is noteworthy that sensitivity, specificity, and
dice coefficients from the training sets (see Table 1) serve as
the baselines for evaluations on the test data.

Qualitative/visual evaluation

In Figure 3, we show original OCT images on the left, next
to the same images with the retinal fluid annotated by
human expert graders in the center. On the right, we
provide the output of our image analysis pipeline, which
is our resulting binary segmentation. In these selected
cases, retinal fluid locations are relatively unambiguous
and graders’ annotations are consistent with the visual
impressions. Our segmentations coincide well with the
graders’ annotations.
The human expert graders annotate each cross-section

separately, which leads to inconsistencies in few subsequent
cross-sections that appear almost identical.
In Figure 4a, we see that similarly looking cross-sections are
annotated differently by human graders, whereas our
algorithm identifies retinal fluid consistently in both cases.
Which is clinically correct in this case remains unclear,
as the fluid can be hidden by other pathologic structures
and the human annotations always leave a little room
for subjectiveness and interpretation, even when high
standards for objectivity are set. In any case, a consistent
result is important and this can only be achieved by the
algorithm. Retinal vessels cast shadows in OCT, attenuating
the signal underneath and yielding darker regions in the
original images. It should be noticed that, without further
substeps involved, such regions get marked incorrectly by
our pipeline (cf. Figure 4b).

Table 1 Evaluation of classification and volume quantification for the different learning methods and the random training data sets

Classification (image-wise) ADM data DME data

Regression RF (12 trees) NN (20 HU) Training Regression RF (7 trees) NN (5 HU) Training

Correctly classified (mean) 72% 70% 73% 88% 75% 72% 76% 87%
Sensitivity 0.69 0.66 0.72 0.83 0.77 0.74 0.77 0.95
Specificity 0.75 0.74 0.74 0.95 0.63 0.67 0.70 0.65

Quantification (pixel-wise)
Dice coefficient 0.54 0.50 0.53 0.63 0.41 0.47 0.50 0.59
Difference vol in mm3

(mean, variance)
(0.22, 0.15) (0.24, 0.10) (0.24, 0.12) (0.47, 0.18) (0.25, 0.07) (0.31, 0.03)

Abbreviations: ADM, age-related macular degeneration; DME, diabetic macular edema; HU, hidden units; NN, neural network; RF, random forest.
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Quantitative evaluation

In Table 1, we compare our resulting binary
segmentations with the manual annotations of the expert
graders serving as the reference of quality.

Two types of quantitative evaluations are considered.
We refer to classification when we aim to detect cross-
sections that contain retinal fluid, that is, each 2D cross-
section is globally classified into either presence or
absence of retinal fluid. We refer to volume

Figure 3 Final binary segmentation results are shown: (left) original image, (center) graders’ annotations, and (right) pipeline output.
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quantification when comparing the pipelines output in
the ROI pixel-wise with the graders’ annotations in each
cross-section. Classification and volume quantification
are compared for the two data sets separately.
Comparing the three different learning techniques
sensitivity and specificity for classification are at the
same level. The NNs are above the 70% bound for both
data sets. For volume quantification, regression lacks
behind on the DME data. NNs, on the other hand, yield
good success rates with dice coefficients bigger than 0.5
for both data sets.
We also provide mean and variance difference between

the manual annotations and our quantified retinal fluid
volume in mm3, where camera specifications yield that
one pixel translates to ≈10− 6 mm3. The corresponding
Bland–Altmann plot in Figure 1 of the Supplementary
Material shows reasonable agreement between
annotations and computed segmentation for the volume
quantification using the NNs.

Computational resources

The run-time in MatlabR2015a for one OCT volume
(128 B-Scans) on a 2.2 GHz Intel Core i7 processor with
16 GB RAM is ~ 45 min. The vector-valued minimization
(Supplementary Equation 5) is the most time-consuming
part (43 min), which is independent from the actual
learning taking less than a second.

Discussion

The development of our pipeline was guided by the idea
of dimension reduction in order to simplify the actual
learning part. Although the pre-segmentation is the first
dimension reduction by significantly quantizing the
intensity range of the image, the most extensive
dimension reduction stems from learning the thresholds
from four global features per cross-section. It seems that
the threshold effectively only depends on global statistics

Figure 4 Some challenges of the processing: (a) similar looking images are annotated differently by human graders, whereas our
algorithm identifies retinal fluid consistently in both cases. Row 1 and 2: (left) original image, (center) graders’ annotations, and (right)
pipeline output. (b) Shadows from vessels are marked wrong by our pipeline. Row 3: (left) original image, (center) graders’ annotations,
and (right) pre-segmentation.
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of the pre-segmentation, enabling cheap and fast learning.
The second step covers the essential image information.
Gabor filtering takes care of texture and the Rudin–
Osher–Fatemi model enhances edges, while denoising
between interfaces. The subsequent piecewise constant
energy minimization yields a pre-segmentation and is
the basis for final binary segmentation through
thresholding. We have seen that this pre-segmentation is
sufficiently rich, so that optimal thresholding on the
training data yields regions that coincide well with the
provided manual annotations. The pre-segmentation is
time-consuming relative to the other pipeline steps.
Faster pre-segmentation methods are availabe but the
piecewise constant minimizer of (Supplementary
Equation 4) yields the best results for our concerns
at the moment.
There is a beneficial interaction between features, pre-

segmentation, dimension reduction, and threshold
learning, which yields convincing results. For each
patient set, we used only 100 randomly selected B-scans
as training samples for evaluating the pipeline on the
remaining cross-sections yielding 4764 (AMD) and 1948
(DME) test samples. It is a big benefit that only few
manually annotated training data are needed in our
pipeline, as large amounts of manual annotations are
often not available. Our image analysis pipeline for
quantification of retinal fluid in OCT has the potential
to significantly support human expert graders. By our
automated classification into presence or absence of
retinal fluid, graders can disregard a large subset of
B-scans speeding up the manual grading process.
Our results for the detection yield sufficient sensitivity
and specificity rates, so that its integration into the
grading process seems useful. Especially considering
the growing number of B-scans and details in each
B-scan due to higher resolution in all scan directions,
automated analysis methods will be needed in
ophthalmology. Here, it is of greatest importance to
have semi-automated segmentation tools for the
validation of proposed automated methods. Our
method will speed up the annotation in a reading
center setting by giving a fast first attempt as the
basis for manual annotation correction, or within the
frame of clinical routine, giving the ophthalmologist a
quick first result for the interpretation of the scan. When
compared with other commonly used computerized
evaluation in biomedicine, such as automated
interpretation of electrocardiograms, our pipeline
appears definitely competitive (cf. NAMEstes24 and
Wetherell25).
Concerning our automated quantification of retinal

fluid, we saw in Results that visual comparison of our
results with the graders’ annotations appear convincing.
For high-quality manual annotations, our segmented

regions coincide well. However, earlier studies have
shown that inconsistencies between graders are normal
to a certain percentage and we can only aim at the
same inter-grader reproducibility such as the reported
human inter-grader variability (cf. Varnousfaderani23).
In Figure 4a, cross-sections appear similar but graders’
annotations differ. Medical experts confirm
inconsistency and our automated approach delivers
consistent segmentations in that case. Taking away
subjectivity by using automated segmentation is of
particular importance when it comes to tracking retinal
fluid changes in patients over time. Such deviations from
the annotations also contribute to the error rates in the
quantitative evaluation (Table 1). Further falsely
segmented areas are due to vessel shadows, which can
easily be removed by human graders’ when our pipeline
is used as a supporting tool as indicated above. For a
fully automated quantification, vessel shadows should
be taken care of in additional processing steps (cf. Girard
et al,26 Wu et al,27 and Ehler et al).28 When our pipeline is
tested on a larger consistently annotated data set and
adapted to the removal of false positives due to vessel
shadowing, it could be used as an analysis tool in an
OCT device. Many of today’s device algorithms (eg, for
retinal thickness segmentation) can show errors in severe
pathologic cases and clinicians’ feedback corrections of
the device software are needed. Owing to our fast
learning time, we can even envision to improve our
algorithm by using segmentation corrections of
clinicians for new learning sets centrally at the device
manufacturer further improving by its use in daily
clinical life.
In comparison with other automated retinal fluid

quantification attempts in the literature, our pipeline’s
learning step is exceptionally efficient due to dimension
reduction. In Chen et al,5 k-nearest neighbor learning
with ≈50 dimensional feature vectors is combined with
graph cuts for voxel-based fluid segmentation. Our
dimension reduction methodology combined with
learning is pixel based and requires only two features.
In contrast to Xu et al,6 we do not require a full retinal
layer segmentation and reasonably smooth fluid
boundaries are guaranteed by thresholding our specific
pre-segmentation. As opposed to Zheng et al,4 we do
not require any human interaction during the analysis
procedure. Cystoid macular edema has been identified
in Wilkins et al7 by an automated segmentation based
on bilateral filtering and thresholding. The bilateral
filtering shares similarities to the Rudin–Osher–Fatemi
model, but we do not directly threshold; instead, we
make a detour by computing a reasonable pre-
segmentation. The algorithm in Wilkins et al7 uses
orders of magnitude more training data and is more
empirically tailored to their specific data set. Their test
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data are few manually selected cross-sections and
the results were evaluated afterwards manually,
so that there seems a chance that the expert annotations
are not fully unbiased from the computational results.
Our pipeline works well on two independent data
sets with different retinal diseases and we just use
about 2 and 5% of the data sets for training,
respectively. Any potential bias in graders’ annotations
from our computational results is avoided in the
first place as the pipeline development was started
after the annotations were performed. In addition,
the VRC, as an independent and unbiased institution
for the standardized evaluation of many multicenter
clinical trials (including drug licensing trials) is
used to blinding of image graders and supervisors
to the purpose of their evaluation when
needed.
Deep convolutional NNs have been successfully

applied to detect subretinal and intraretinal cystoidal
fluid.3 However, deep learning requires large amounts
of training data. In Lee et al,29 central OCT scans are
linked to electronic medical records enabling the
application of deep convolutional NNs. There, 80 839
training samples are used to distinguish between normal
and AMD scans in 20 163 validation samples. Beyond
classification, our target is fluid quantification. As the
amount of accurate pixel-wise fluid annotations is
often limited, we aimed to learn efficiently and use
only 100 training and 4764 validation samples in AMD
patients.
In conclusion, we have demonstrated that our image

analysis pipeline yields good automated retinal fluid
quantification in OCT images and our visual results
could be useful to expert graders within their current
grading processes. The pipeline is based on dimension
reduction techniques with a fast learning part and low
memory needs. Furthermore, it requires exceptionally few
training data and is sufficiently versatile for further
adjustments in the sense that current steps allow for
modifications and additional steps can easily be inserted.
The successful interplay of enormous dimension
reduction with relatively elementary learning techniques
is remarkable.
We envision several aspects for future work; for

instance, we will incorporate artifact removal from
vessel shadows by integrating ideas from Girard
et al26,27 and Wu et al27 Moreover, so far, graders at the
VRC annotated each OCT cross-section separately,
dismissing the full spatial correlations of the 3D
volumes. All of our pipeline steps are either already
available or can be implemented in higher dimensions,
so that we plan to perform segmentation in 3D directly.
However, suitable 3D annotations are needed (cf.
Figure 4a), but are not easy to consistently annotate

even for an experienced grader or retinal specialist.
Both, vessel shadow removal and 3D implementations
are work in progress.

Summary

What was known before
K Automated OCT image analysis is the future in

ophthalmology.
K Fluid regions are regions of interest for macular OCT

evaluation.
K Many algorithms published until now use large

computational time and are not feasible in clinical routine.

What this study adds
K Validated algorithm for retinal fluid identification in the

two main retinal diseases (neovascular AMD and DME).
K Comparison with standardized reading-center controlled

manually annotated OCT data.
K Fast learning part allows use in clinical routine.
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