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Abstract

The aim of this study was to present methods

to improve the analysis of refractive data.

A comparison of methods is used to analyse

refractive powers using individual powers and

aggregate data. Equations are also developed

for the representation of the average power of

a lens or refractive data as a univariate

measure, which includes spherical, coma, and/

or other aberrations. The equations provide a

precise representation of refractive power,

which is useful for comparing individual and

aggregate data. Average lens power in the

principal meridian can be adequately

computed as can the average lens power

through orthogonal and oblique meridians,

providing a good univariate representation of

astigmatism and refractive power. Although

these formulae are perhaps not as easy to use

as, for example, the spherical equivalent, they

are more precise and superior in principle

involving fewer approximations and are not

subject to systematic bias. These effects are of

significance when dealing with high-powered

lenses such as intraocular lenses or the cornea.

They need to be taken into account

particularly for calculations of intraocular lens

power, toric intraocular lenses, and cornea

refractive surgery, especially if outcomes are to

be improved. Such issues are of particular

importance when dealing with aggregate data

and determining statistical significance of

treatment effects.
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Introduction

There are many clinical situations where a

measure of refractive outcome is needed to

determine the effectiveness of a given treatment

or intervention. A univariate measure is usually

sought, particularly when comparing

population samples or testing for an association

between a characteristic feature of a population

and a treatment effect. It is important, therefore,

that such a measure is not subject to bias or

systematic error, as this may lead to erroneous

assumptions regarding a treatment effect.

Similarly, in the analysis of refractive data, there

is a natural tendency to want to view refractive

powers as a univariate measure, that is, as a

single number. The easiest and most convenient

form is a scalar number. This underpins the

popularity of using the ‘spherical equivalent’

often referred to as the ‘mean spherical

equivalent’ (MSE) or more correctly ‘the nearest

equivalent sphere’ (NES)1 as such a measure.

If, however, a univariate measure is to be used,

one needs to have confidence that any

approximations that are made do not discard

useful information and more importantly, that

the measure does not introduce a systematic

bias or a non-constant error. For example,

although the spherical equivalent is popular,

it unfortunately loses information and

introduces a non-constant error, which may

affect the statistical analysis and interpretation

of results.2,3 In addition, treating the

components of refractive powers as

independent values, leads to similar issues.

For example, treating the ‘cylinder’

independently of the spherical component

whether as a vector or scalar measure may

result in misleading results.4–6 To understand

St Paul’s Eye Unit, Royal
Liverpool University
Hospital, Liverpool, UK

Correspondence:
SB Kaye, St Paul’s Eye Unit,
8Z Link Ophthalmology,
Royal Liverpool University
Hospital, Prescot Street,
Liverpool L7 8XP, UK.
Tel: +44 (0)151 706 2134;
Fax: +44 (0)151 706 5861.
E-mail: s.b.kaye@liverpool.
ac.uk

Received: 7 October 2013
Accepted: 6 November
2013
Published online: 13
December 2013

Eye (2014) 28, 154–161
& 2014 Macmillan Publishers Limited All rights reserved 0950-222X/14

www.nature.com/eye

C
A
M
B
R
ID
G
E
O
P
H
T
H
A
L
M
O
L
O
G
IC
A
L
S
Y
M
P
O
S
IU
M

http://dx.doi.org/10.1038/eye.2013.266
mailto:s.b.kaye@liverpool.ac.uk
mailto:s.b.kaye@liverpool.ac.uk
http://www.nature.com/eye


these issues, it is necessary to review the arithmetic of

treating paraxial refractive powers, how the spherical

equivalent is derived, and whether there are more robust

methods of analysis. Furthermore, optical aberrations are

important components of refractive powers and it is

therefore necessary to consider and include, where

possible, measures of these aberrations in the analysis of

refractive data.

Adding refractive data

Refractive data are conventionally expressed as sphere/

cylinderx axis, from which it is apparent that there are

three components that are co-dependent.4–11 Despite this,

there is a tendency to treat each component

independently. For example, consider the following two

refractive powers, þ 2/þ 2x90 and þ 1/þ 1180. If they

were to be added together what would be the result?

There are three possibilities depending on whether each

component is treated independently or dependently.

If they are treated independently as scalar values this

leads to the following situation,

Sphere
2
1
3

��������

�������� þ
Cylinder

2
1
3

��������

�������� þ
or (þ 2/þ 290)þ (þ 1/þ 1180)aþ 3/þ 3, which is

incorrect. If they are treated independently as vectors,

this leads to

Sphere
2
1
3

��������

�������� þ
Cylinder

290

1180

190
1

��������

�������� þ
or (þ 2/þ 290)þ (þ 1/þ 1180)aþ 3/þ 190, which again

is incorrect. Furthermore, treating the sphere and

cylinder independently leads to a particular problem

under transposition. If, however, they are treated

dependently, then

Sphere
21

1
4

Cylinder
290

1180

190
1

��������

�������� þ
or (þ 2/þ 290)þ (þ 1/þ 1180)¼ þ 4/þ 190, which is the

correct (paraxial) result. In addition, as evident in Table 1,

if treated dependently the same result is obtained under

transposition as would be expected, whereas different

results are obtained if the data are treated independently.

It is evident that the space of cylinders is not closed

under addition or subtraction, that is, a cylinder plus a

cylinder does not necessarily equal a cylinder. Clearly, in

any analysis of changes in refractive powers, the

components need to be treated as co-variates.4–11

Calculating refractive change

Changes or summations of refractive powers are self-

evident when there is no change or rotation of axes. More

commonly, however, there is an axis rotation. It is

therefore, necessary to be able to refer to a standard

system. This method was principally developed by

Long.12 Consider for example, a postoperative refractive

result of þ 1/þ 2x75. If one had an intended or target

refraction of 0/þ 0.5x150 then what is the difference

between the intended and actual outcomes? This can be

achieved using Long’s method as follows:

S=CA ¼ f11 f12

f21 f22

where, in the 2� 2 matrix, the cell in the first row and

first column is denoted by f11 and the cell in the first row

and second column is denoted by f12 and so on. Long12

showed that refractive data can be transformed into four

independent components given by, f11¼ SþC sin2A,

f12 ¼ �C sinA cosA, f21 ¼ �C sinA cosA, and

f22 ¼ SþC cos2A. Therefore,

S=CA ¼ f11 f12

f21 f22
¼ SþCsin2A �C sinA cosA

�CsinA cosA SþC cos2 A
:

For a thin lens, f12¼ f21 so that,

S=CA ¼ ½ f11 f12 f22� ¼ ½ SþC sin2 A �C sinA cosA SþC cos2 A�:
Returning to the example, the postoperative refractive

error of þ 1/þ 2x75 and target of 0/þ 0.5x150 can then be

transformed to,

þ 1=þ 275 ¼ ½1þ 2 sin2
75 � 2 sin75 cos75 1þ 2 cos2

75�
¼ 2:87� 0:50 1:13

0=þ 0:5150 ¼ ½0þ 0:5 sin2
150 � 0:5 sin150 cos150 0þ 0:5 cos2

150�
¼ 0:13 0:22 0:38:

Thus, to calculate the difference, we have

½f11 f12 f22�Postop � ½f11 f12 f22�Target

¼ ½0:13� 2:87 ¼ � 2:74� ½0:22�ð� 0:50Þ ¼ 0:72�
½0:38� 1:13 ¼ � 0:76� ¼ ½� 2:74 0:72 � 0:76�:

This difference is then back transposed into S/CA

using Keating’s or other methods,4–6,9–10,13 yielding

� 2.97/þ 2.45162. The usefulness of this method is that,

it can be applied to large data sets to provide means,

standard deviations, confidence intervals, and statistical

tests. For example, if the following are pre- and

postoperative refractive results from five subjects

(Table 2). Using Long’s formalism7 and the methods
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of Harris,4–6,14,15 and Kaye and Harris10 allows one to

calculate the total, mean, SD, upper (UCI) and lower

(LCI) confidence intervals, and SEM. In this particular

example, the mean difference of � 0.44/þ 1.59146 (SD

4.91/1.61115) between the pre- and postoperative data is

significant P¼ 0.04 (see method of Harris for statistical

analysis14).

Plotting refractive powers

Refractive data plots are preferably shown on 3D axes.

Harris developed an excellent method for representing

data on standard axes.16 Although there are other

methods,17 one of the attractions of this method, is that

the length of a power vector of 1D is that of a cylinder of

1D. With this in mind it allows one to visualise and

interpret the distance of a point from the origin. The

Euclidian distance ak k between a point and the origin on

a 2D plot, such as Y and X, is, ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. For a 3D

plot, the distance of a point from the origin is

ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The distance of a point in

f11 f12 f22 from the origin is then,

ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f11

2 þ f12
2 þ f22

2
p

. This is fine for a single point,

however, because the axis often changes between

different refractive powers, the plotting of each point

then requires a rotation of axes. Harris showed that it is

possible to provide a solution to this by multiplying f12

by
ffiffiffi
2

p
:16 This then gives, h1¼ f11, h2¼

ffiffiffi
2

p
f12, h3¼ f22.

The distance of a refractive power point from the

origin (Figure 1) is then hk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f11

2 þ 2f12
2 þ f22

2
p

,

which if substituted by the terms of S/CA becomes

hk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þðSþCÞ2

q
and it is evident that there is no

need to rotate the axes.16 If one considers an example

of say a preoperative refractive power of 0/þ 190 �
½ 1 0 0� , a postoperative of 0/þ 1180 ½ 0 0 1� , the

difference being � 1/þ 2180 ½ � 1 0 1� , then a plot

of these points, as shown in Figure 2, would be

hPreop ¼ ½ 1 0 0� , hDifference ¼ ½ � 1 0 1� , and

h3 ¼ ½ 0 0 1� . The length of each of these powers from

the origin is, hk kPreop¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 02 þ 02

p
¼ 1D,

hk kPostop¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 þ 02 þ 12

p
¼ 1D,

hk kDifference¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 12 þ 02 þ 12

p
¼

ffiffiffi
2

p
� 1:41D.

Astigmatism

In the analysis of refractive power, a commonly used

term is astigmatism. Astigmatism refers to the absence of

stigmatism (a point focus). Aberrations therefore are

types of astigmatism. There are three main types of

non-chromatic aberrations: spherical, off axis (coma),

and oblique. Most higher orders of aberration are

combinations of these main aberrations. Aberrations are

important in the analysis of refractive power and any

univariate measure needs to take them into account.

If, however, one considers only paraxial powers, then

astigmatism is limited to that found within a cylinder.

A cylinder, however, is not the same as astigmatism.

Indeed, if one accepts the concept of there being a

Table 2 Preoperative, postoperative, and the difference between pre- and postoperative refractive data

Subject S/CA f11 f12 f22 S/CA f11 f12 f22 S/CA f11 f12 f22

1 � 2/113 � 1.95 � 0.22 � 1.05 7.00/� 4.0011 6.86 0.73 3.14 2/3100 4.91 0.51 2.09
2 0.5/347 2.10 � 1.50 1.90 � 2.00/� 3.4934 � 3.12 1.63 � 4.38 � 1/� 1.55 � 1.01 0.13 � 2.49
3 � 2/590 3.00 0.00 � 2.00 � 0.01/4.02179 � 0.01 0.09 4.01 3/� 15 2.99 0.09 2.01
4 1/367 3.54 � 1.08 1.46 � 8.83/3.65164 � 8.53 0.99 � 5.47 � 5/15 � 4.99 � 0.09 � 4.01
5 � 4/� 1165 � 4.07 � 0.25 � 4.93 5.00/1.00165 5.07 0.25 5.93 1/0175 1.00 0.00 1.00
Mean � 1.15/1.9070 0.53 � 0.61 � 0.93 � 0.44/1.59146 0.05 0.74 0.65 � 0.30/0.9098 0.58 0.13 � 0.28
SD 2.36/1.41123 3.35 0.64 2.78 4.91/1.61115 6.23 0.62 5.20 2.75/1.12102 3.82 0.23 2.80
Total � 5.74/9.4870 2.63 � 3.04 � 4.63 � 2.22/7.95146 0.27 3.69 3.23 � 1.48/4.4898 2.90 0.64 � 1.40
UCI 4.36/2.89103 7.10 0.65 4.52 9.48/4.14125 12.26 1.94 10.84 5.09/3.09101 8.06 0.58 5.20
LCI � 8.09/3.7648 � 6.04 � 1.87 � 6.37 � 12.24/2.7810 � 12.16 � 0.47 � 9.54 � 6.99/1.3215 � 6.90 � 0.32 � 5.76
SEM 0.24/� 0.0933 0.22 0.04 0.18 0.42/� 0.1025 0.40 0.04 0.34 0.25/� 0.0712 0.25 0.01 0.18

Data are presented as dioptres (apart from axis in degrees) in spherocylinder notation (S/CA), sphere (S), cylinder (C), axis (A), and in the corresponding

Long’s formalism f11, f12, and f22. Mean, SD, upper (UCI) and lower (LCI) 95% confidence intervals, and standard error of the mean (SEM).

Table 1 Adding refractive powers

Sphere
(dioptres)

Cylinder
(dioptres)

Axis
(degrees)

NES
(dioptres)

þ 3 þ 3 90 þ 4.50
� 3 � 4 90 � 5.00

Sum 0 � 1 90 � 0.50
Transposition to a þ ve cylinder

þ 3 þ 3 90 þ 4.50
� 7 þ 4 180 � 5.00

Dependent sum � 1 þ 1 180 � 0.50
Independent sum (vector) � 4 þ 1 180 � 3.50
Independent sum (scalar) � 4 þ 7 � 0.50

Abbreviation: NES, nearest equivalent sphere.1
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spherical equivalent, then it follows that a cylinder has a

spherical component. Accepting for the moment the

errors introduced by the NES, it is then possible to

subtract the spherical component represented by the NES

away from a cylinder, leaving the astigmatic component.1

If one considers the refractive powers in Figure 3, it is

evident that subtraction of the NES, results in a Jackson

crossed cylinder (JCC). Consider a refractive power of

S/CA. It follows that S=CA ¼ Sþ C
2

� �
þ S=CA � Sþ C

2

� �� �
,

which simplifies to S=CA ¼ Sþ C
2

� �
þ � C

2 =CA

� �
, that is,

S/CA¼NESþ JCC. Thus if one applies this to a cylinder,

we have, CA ¼ C
2 � C

2 =CA or a cylinder of þ 190 yields a

NES of þ 0.5 and a JCC of � 0.5/þ 190. What is

important, however, is that the space of spheres and that

of JCCs are closed under the arithmetic operations of

addition and subtraction. The separation of the paraxial

stigmatic and astigmatic components is also evident in

the method of Thibos et al, in which the spherical

component (M) is M¼ SþC/2 and the astigmatic

components are J0 and J45.17 Although this is a

reasonable determination of paraxial astigmatism, a

better approximation, which is not subject to a systematic

error introduced by the spherical equivalent, is to use the

equations below for average lens power denoted by

/FS as described below equation 7.2 This then gives for a

cylinder 0/CA¼/CSþ/�CS/CA with /�CS/CA the

astigmatic component.

The paraxial approximations: errors

It is essential to appreciate the errors introduced by the

paraxial approximations. Consider a section through the

principal meridian of a lens cylinder (Figure 4) of sag

height S, half cord length Y and radius R. Orthogonal and

non-orthogonal oblique sections at angles y and g away

from the principal meridian, result in elliptical sections

with major radii (semi-diameters) R sec y and R sec g,
respectively. The focal length (f) and back vertex power

(F) of a lens of refractive index n in a meridian can be

determined as follows. A ray parallel to the axis of the

lens subtends at z, an angle of incidence a, with the

normal to the lens surface (Figure 5). The angle of

refraction b, that is, sin� 1 sin a
n

� �
, subtends an angle (a� b)

with the axis of the lens. The power of a lens for a section

through the principal meridian (FP), where g and y are

both zero, is

FðaÞ ¼ FP ¼ n

R

tanða� bÞ
sin a� tanða� bÞfcos a� 1g ½1�

and

tan aMax ¼ Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �Y2

p :2;3

For the treatment of all sections, principal, orthogonal

and non-orthogonal oblique, the reader is referred to

references therein.2,3 For the power of a lens in the

principal meridian, (y and g both zero), and for very

small angles of incidence, that is, paraxial rays or rays

close to the optic axis, tanaEa, sinaE0, cosaE1, F can be

approximated by F � 2Sn
S2 þY2

a� b
a . In this paraxial case,

bBan1/n and this reduces to the first approximation

(AP1) or (FAP1),

FAP1 ¼ 2Sðn� n1Þ
S2 þY2

: ½2�

Figure 1 Representation of the components of refractive
powers. Data is transformed from S/CA notation into Long’s
formalism f11, f12, f22 and the power vectors of Harris, where
h1¼ f11, h2¼

ffiffiffi
2

p
f12, h3¼ f22. Units are in dioptres. One point is

plotted and shown to have an Euclidian length of 1D.

Figure 2 Change in refractive power. Representation (dioptres)
of preoperative (1D), postoperative (1D), and the respective
difference (surgically induced refractive effect) of 1.41D.
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Furthermore, if the S2 term is ignored (which has been

the current clinical practice), then a further or second

(AP2) approximation FAP2 is introduced, given by

FAP2 ¼ 2Sðn� n1Þ
Y2

: ½3�

Thus, two approximations have been introduced and it is

equation 3, FAP2, that is used to derive the formula for the

spherical equivalent of a lens, as will be shown.2 Note,

the first approximation, FAP1 is useful for providing a

reasonable approximation for power in non-principal

meridians without being subject to the systematic bias

that occurs with the second approximation (FAP2).2,3

The potential error of the FAP2 approximation was

highlighted by Pascal in his paper on the power of

cylinders in oblique meridians.18

Orthogonal meridians

Consider the second approximation FAP2(y). For a

cylindrical lens and for sections off the principal meridian,

the second approximation FAP2(y) then becomes,

FAP2ðyÞ ¼
2Sðn2 � 1Þ cos2 y

Y2
: ½4�

This equation is often written approximated as

FAP2ðyÞ ¼
ðn2 � 1Þ cos2 y

R
: ½5�

Once we accept FAP2 as an approximation for the power of

a lens at angle y, the mean or average power of a lens can

be determined by integratingFAP2 over y. Using the

definition of the average of a function, the orthogonal

meridional average of FAP2 that is, /FAP2S is given by,

/FA2S ¼ 2

p

Zp2
0

2Sðn2 � 1Þ
Y2

cos2 ydy ¼ Sðn2 � 1Þ
Y2

¼ 1

2

ðn2 � 1Þ
R

: ½6�2;3

Thus, the average approximated power of a cylindrical

lens is ‘half’ of the lens power in its principal meridian

(10). This then is the justification of taking the spherical

equivalent of a spherocylinder to be ‘sphere’ 0.5C, or half

of the cylinder power combined with the spherical part

of the refractive power. Equation [12] for average lens

power has a systematic bias brought about by the

exclusion of the square of the sag or S2 term (Figure 6). In

essence, although the contribution of the S2 term is small,

its effect is dependent on the lens parameters and power

of the lens and importantly, is therefore, not constant

(Figure 6). A particular consequence of this is that for

aggregate data an unaccountable error is introduced into

the summation or mean of a sample of lens powers.

An improved paraxial approximation not subject to a

systematic error

If aberrations are not of concern, say for small (paraxial)

lens segments, then it is worth considering at this point

the average power based upon the first paraxial

approximation FAP1. The radius of orthogonal sections

away from the principal meridian is R ¼ 2S
S2 þY2 sec2 ðyÞ, and

Figure 3 Paraxial astigmatism. Subtraction of the spherical
component represented by the nearest equivalent sphere (NES)
away from a cylinder, leaving the astigmatic component, the
Jackson cross cylinder (JCC). Data in first row as a power cross.
Units in dioptres.

Figure 4 Light ray refracted through a section of a thin lens.
Radius (R), angles of incidence (a), emergence or refraction (b),
and back vertex focal length (f).

Figure 5 Section through the meridian of a spherical lens.
Radius (R), sag height (S), and half cord length (Y). As the lens
power increases, R reduces and for an equivalent cord length or
segment size, S increases relative to Y. R ¼ Y2 þS2

2S .
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which if substituted gives FAP1 ¼ 2Sðn2 � 1Þ
S2 þY2 sec2 y.

2 Using

precisely the same assumptions that are made using FAP2

to derive the spherical equivalent that is, excluding the

effect of spherical aberration for small sections and

oblique non-orthogonal meridional power, a formula for

the average power based on FAP1 that is /FA1Scan be

derived as follows:

/FA1S ¼ 2

p

Zp2
0

2Sðn2 � 1Þ
S2 þY2 sec2 y

dy ¼ 2ðn2 � 1Þ
S

1� Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þY2

p
� 	

: ½7�2

For a lens of refractive index n2 in air. For a hemicylinder,

the cord passes through the centre of the cylinder and Y

and S are then equal to the radius R. The average power

then reduces to /FA1S ¼ 2ðn2 � 1Þ
R 1� 1ffiffi

2
p

h i
� 0:59 n2 � 1

R .

That is, the average power of a hemicylinder is 0.59

(a proportionality factor PF¼ 0.59) of its power in the

principal meridian. Depending on the size of the lens

segment (between a cord length of zero to that equal to

the diameter) PF will vary between 0.5 and 0.59, that is

0.5oPFr0.59. The spherical equivalent of NES assumes

a cord length of zero hence the use of 0.5 as the

proportionality factor. In addition, it should be noted

that invariance under transposition assumes that PF is 0.5

(exclusion of S2 and use of the second paraxial

approximation FAP2). If we are given a lens of power F,

then NES, the nearest equivalent spherical power is just
1
2 F, and the difference between /FA1S and NES, DF is,

DF ¼ 2ðn2 � 1Þ
S

1� Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þY2

p � S2

2ðS2 þY2Þ


 �
: ½8�2

It is clear that as the power of the lens increases so does

the error introduced by the spherical equivalent.14

One of the important differences between the FAP1 and

FAP2 approximations is that the FAP1 approximation

retains the correct relationship between two lens powers.

In particular, use of FAP1 approximation makes it

relatively easy to calculate the effective power of two

orthogonal cylinders at an angle y. For example, the

effective power of two orthogonal equal power cylinders

at an angle y is

FðyÞþ Fðyþ 90Þ0 ¼
2Sðn2 � 1Þ 2Y2 þ S2 sinð2yÞ

� �
Y4 þY2S2 þ 1

4 sin2 ð2yÞ
½9�

which importantly, is dependent on y. Essentially two

orthogonal cylinders, cannot be represented by a

spherocylinder combination and vice versa. Similarly, the

power of a spherocylinder with a spherical component S

and a cylinder with cylindrical power �C¼ 2S is not

zero. Thus strictly speaking, a JCC, as its name defines,

can only be constructed from two crossed cylinders, that

is, two orthogonal cylinders of equal but opposite power

and not by a spherocylinder combination.2 This is an

important result and although the magnitude of the error

is small for small powers, it is significant for aggregate or

high powers. In particular it becomes clear that the

magnitude of the error is amplified as the samples or

data sets increase in size. A consequence of this, would

be the incorrect assumption that the mean keratometric

power reflects the average of two keratometric

orthogonal cylinders, k1 and k2. The cornea is not

composed of two orthogonal cylinders so that the error

introduced by taking the mean of k1 and k2 is very small.

The relevance of this is apparent in the calculation of

intraocular lens (IOL) power, particularly toric IOLs.

For example, the methods used for the calculation of

IOL power, treat the cornea as being composed of two

orthogonal (perpendicular) keratometric powers, k1 and

k2. When k1 and k2 are different as is the general case, the

arithmetic mean of k1 and k2 is used as a measure for the

calculation of IOL power. If it is decided to use a toric

IOL, then the power of the IOL based upon k2 (k2Sk1) is

used for the sphere (IOLk2) and the difference powers

between IOLk2 and IOLk1 (the latter based on k1) is

used for the cylinder component of the IOL. It is clear,

however, from equations 8 and 9 that the average of

k1 and k2 is not a sphere, and that the cornea is not

composed of two perpendicular cylinders of powers k1

and k2. The cornea has varying powers and as such,

it would be preferable to take several (not orthogonal)

keratometric measurements to determine an

approximation of the spherical IOL component with

the cylinder IOL power (if a toric lens is intended) then

based upon the difference between the highest (IOLk2)

and lowest (IOLk1)—the latter being in current practice.

In addition, because of spherical aberrations for a high-

powered lens such as the cornea are significant, it would

be preferable to include an approximation according

to the profile of the cornea—see reference 3 for

non-spherical shapes and equation 11 below for a

spherical shape.

Figure 6 Sections through the meridians of a lens cylinder.
Principal meridian of radius (R) and orthogonal and non-
orthogonal oblique meridians of radii (R sec y) and (R sec g)
respectively.
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Aberrations

Treatment of power in clinical optics has largely been

limited by paraxial approximations.19 The limitations of

these approximations, is evident by the recognition of

the importance of spherical aberration in the design of

lenses, particularly intraocular lenses.20,21 The gulf

between standard refractive data based say on

retinoscopy and that measured with systems, is largely

due to the use of paraxial approximations for the former

and the extension to geometric optics for the latter.

Even for the micro-lens arrays used in aberrometers or

wave front systems, it is perhaps unfortunate that

approximations are also made for the individual micro-

lens. Light rays refracted at the surface of a spherical lens

do not come into focus at the same point, with peripheral

rays being more refracted than paraxial rays (Figure 7).

Rays not parallel to the axis of the lens produce coma and

rays off the axis produce oblique astigmatism. Although

spherical aberration is minimal for lens segments with

small sag heights, it increases for more powerful lenses

such as the cornea and also varies according to the

refractive index of the lens. The change in power of a lens

from paraxial to marginal rays is shown in Figures 7 and 8.

There is, however, no need to exclude peripheral rays in

the analysis of refractive powers. The contribution of

spherical aberration to the power of the lens can be taken

into account by calculating the average power of the lens

in that meridian, that is, keeping y and g constant and

letting a increase from zero to amax.2,3 Other aberrations

(coma or oblique) can similarly be determined by varying

y and g.2,3 It has been shown that the average focal length

/fPS and power /FPS of a lens in its principal meridian,

which includes spherical aberration,2,3 is

/FPS ¼ n

R

aMaxðn2 � 1Þ
aMaxðn2 � 1Þþ sin aMax þnE sin aMax;

1
n

� �
 !

: ½10�

For small segments such as the width of the pupil

(5 mm), aMax � Y
R and equation [10] can be simplified to

Fh i ffi 6Rn2ðn� 1Þ
6R2n2 �Y2

� 
which is useful for calculating the

average power of the cornea or an intraocular lens.2,3

For example, for a pupil size of 5 mm and (and refractive

index of 1.37), the average anterior surface power

(for a spherical shape) /KAnteriorSof the cornea is

/KAnteriorS ffi 6Rn2ðn� 1Þ
6R2n2 �Y2

� 	
¼ 4:17R

11:26R2 � 0:00252
: ½11�2

Therefore, if for example the measured anterior

surface corneal radii are 7.8 mm and 8 mm, based

upon a spherical profile for each section (which may

not be the case, see reference 3), gives average anterior

surface powers of /KAnteriorS¼ 47.87 and

/KAnteriorS¼ 46.65 for k1 and k2, respectively.2

In clinical practice, the paraxial power of a lens is

usually given as F ffi ðn� 1Þ
R . Thus, for a standard trial lens

of refractive index 1.5 and width of 20 mm,

/FS ffi F

1� 0:012F2

3:38

� 	
. Hence, for a lens of stated power of

10D, and for a small section of the lens, including

spherical aberration, gives an average power of

10.03D. For section through a spherical lens, a good

univariate representation of average lens power, that

includes aberrations that arise through orthogonal

and oblique meridians, can be similarly approxi-

mated by /LS ffi 1:13R
4:10R2 � 0:0001

� �
,2 or for example,

/LS ffi 0:56F
1:025� 0:0001F2

� �
for a lens from a standard trial lens

set of segment of width 20 mm and n¼ 1.5.2

Figure 7 Light rays refracted through a section of a thin lens.
Longitudinal spherical aberration. Paraxial (aB0) and marginal
(amax) light rays. Focal length ranges between fParaxial and
fMarginal, with average focal length /fS. Focal length of circle of
least confusion (fCoLC), the position of which coincides with the
densest collection of rays.

Figure 8 Power of a lens. Power of a lens (FP) according to the
angle of incidence (a) for þ 10 dioptre lens (aB0). As the
angle of incidence increases so does the power of the lens (see
Figure 6). Angle of incidence in radians.

Analysis of refractive data
SB Kaye

160

Eye



In addition to that, provided the contour of a surface is

known, similar equations can be developed for the

average refractive power of any continuous surface. For

example, a parabolic or other shape used to simulate the

corneal profile.2,3

Discussion

This article reviews some of the issues that arise in the

analysis of refractive data. In particular it is suggested

how such data could best be analysed and represented.

Methods are presented for the representation of the

average power of a lens or refractive data as a univariate

measure of refractive power, which includes spherical,

coma and/or other aberrations. As opposed to the

systematic bias brought about by use of the spherical

equivalent, these methods have no such bias. Treatment

effects or associations between biological variables and

refractive error can thus be made more precisely. This

may have significant effects for aggregate data, high

powers, and analyses or representations of lens power,

which depend on the constancy of this approximation.

Average lens power in the principal meridian can thus

be adequately computed as can the average lens power

through orthogonal and oblique meridians providing a

good univariate representation of lens power. Although

these formulae are perhaps not as easy to use as, for

example, the spherical equivalent, they are more precise

and superior in principle involving fewer

approximations and are not subject to systematic bias.

Although less important for the individual case, such

issues are of much greater importance when dealing

with aggregate data and determining statistical

significance of treatment effects. These effects are of

significance when dealing with high-powered lenses

such as intraocular lenses or the cornea. Consideration

of these effects need to be taken into account

particularly for calculations of intraocular lens power,

toric intraocular lenses, and cornea refractive surgery if

outcomes are to be improved.
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