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Abstract

Purpose To elucidate the heritability of

peak density and spatial width of macular

pigment (MP) using a Classical Twin Study.

Methods Fundus autofluorescence images

were obtained at 488 nm from 86 subjects or

43 twin pairs (21 monozygotic (MZ) and 22

dizygotic (DZ)) (27 male, 59 female) aged

from 55 to 76 years (mean 62.2±5.3 years).

The relative topographic distribution of MP

was measured using a grey scale of intensity

(0–255 units) in a 71 eccentricity around the

fovea. Relative peak MP density (rPMPD)

and relative spatial distribution of MP

(rSDMP) were used as the main outcome

measure in the statistical analysis.

Results A significantly higher correlation was

found within MZ pairs as compared with that

within DZ pairs for rPMPD, (r¼ 0.99, 95%

confidence interval (95% CI) 0.93 to 1.00) and

0.22, 95% CI � 0.34 to 0.71), respectively,

suggesting strong heritability of this trait. When

rSDMP was compared, there was no significant

difference between the correlations within MZ

pairs (r¼ 0.48, 95% CI � 0.02 to 0.83) and DZ

pairs (r¼ 0.63, 95% CI 0.32 to 0.83), thus rSDMP

is unlikely to have a considerable heritable

component. In addition, there was no difference

between any MP parameter when normal

maculae were compared with early age-related

macular degeneration (AMD) (rPMPD 0.36 vs

0.34, t¼ 1.18 P¼ 0.243, rSDMP 1.75 vs 1.75,

t¼ 0.028 P¼ 0.977).

Conclusions rPMPD is a strongly heritable trait

whereas rSDMP has minimal genetic influence

and a greater influence by environmental factors.

The presence of macular changes associated with

early AMD did not appear to influence any of

these pigment parameters.
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Introduction

Macular Pigment (MP) is composed principally

of the polar carotenoids lutein (L) and

zeaxanthin (Z). Despite the fact that there are up

to 50 dietary carotenoids, and approximately 14

carotenoids in human serum,1 only L and Z are

selectively concentrated within the retina.2

Much interest has focused on MP owing to its

location and inherent properties in that it is

concentrated in the area of the retina that is

most susceptible to age-related degenerative

change and it can act as both a chain-breaking

antioxidant and short-wavelength light filter.3–5

Those with a family history of advanced age-

related macular degeneration (AMD) have been

shown to have lower MP, whereas some studies

have shown a difference in MP between those

with early AMD (drusen Z63 mm or pigmentary

irregularities also referred to as age-related

maculopathy) and those without,6–8 although

these relationships have not been consistent.9–11

Therefore, it has been postulated that MP may

protect the retina from oxidative stress6,7,12 and

age-related neuronal loss, thereby reducing the

risk of AMD.

Large interindividual differences in MP

have been demonstrated with several large

populations-based studies showing that peak

MP density (PMPD) can vary by over a factor of

10 between individuals.13,14 Subsequent studies

have suggested a number of parameters such as

age, diet, percentage body fat, gender and

tobacco use15–19 might be determinants of MP;

however, these only account for approximately

a third of the variance leaving a significant

proportion unexplained. In addition, despite
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MP’s dietary origin only modest correlations exist with

serum and dietary levels of L and Z. Although the level

of MP can be augmented in most people by diet or

supplementation, the response is variable and not always

correlated with baseline level, with most

supplementation studies identifying a subgroup of ‘non-

responders’.20 Given the possibility of idiosyncratic

differences in absorption, transport, and retinal capture

of dietary carotenoids, Liew et al21 examined the

determinants of MP in a Classic Twin Study and

concluded that genetic background is an important

determinant of MP optical density. Liew et al21 only

analysed PMPD, despite imaging techniques such as

fundus autofluorescence (FAF) imaging allowing the

spatial distribution of MP density (SDMP) to be

identified and this has been shown to also vary

significantly within individuals.22,23 In general, the MP

concentration peaks at the foveal centre where Z

predominates and declines rapidly with eccentricity

into the parafovea where L becomes the dominant

carotenoid.24–26 However, imaging techniques have

revealed interesting variations in SDMP such as varying

peak widths and ring-like structures,23,27,28 anatomical

differences such as foveal width and slope29,30 can

partially account for these although the reasons for their

existence are not fully known.

We therefore explored both PMPD and SDMP assessed

from FAF images in a group of older twins who were

enrolled as part of the Melbourne AMD Twin Study in

order to investigate the relative contribution of genetic

and environmental factors that may determine the

variation in these parameters in older subjects without

advanced AMD.

Materials and methods

A classical twin study

A classical twin model compares the phenotypic

resemblance between monozygotic (MZ) twin pairs who

share all of their genotype with dizygotic (DZ) twin pairs

who share up to 50% of their genes while assuming a

shared environment within pairs irrespective of zygosity.

The premise of such studies is that greater similarity will

be found within MZ compared with DZ twin pairs if the

trait has a significant heritable component.

Twin recruitment

Participants (MZ and DZ twin pairs) were enrolled

through the National Health and Medical Research

Council-funded Australian Twin Registry (ATR) as part

of the AMD twin study carried out by the Centre for Eye

Research Australia, University of Melbourne. All twins

over the age of 50 on the register were invited to attend.

Detailed inclusion and exclusion has been outlined

elsewhere.31,32 Within the AMD twin study each twin

underwent a standard questionnaire, a comprehensive

eye examination and intraocular photography according

to protocols published elsewhere.31,32

Statement of ethics

The study was developed in accordance with the tenets

of the Declaration of Helsinki and ethics approval for the

study was obtained from both the Royal Victorian Eye

and Ear Hospital Human Research and Ethics Committee

and the ATR. Each subject provided written informed

consent before participation.

Zygosity

Twin zygosity was determined by asking a standardized

and validated collection of questions used by the ATR.33

Further details have been outlined elsewhere.31,32

Image acquisition

FAF imaging was undertaken using a cSLO (Heidelberg

Retinal Angiograph 2 (HRA-2), Heidelberg Engineering,

GmbH, Dossenheim, Germany). A solid-state laser

(488 nm) was used to illuminate the fundus and the

induced fluorescence was recorded through a long-pass

filter with a short-wavelength cutoff at 500 nm. A two-

wavelength method is the more commonly accepted

method for MP assessment using FAF owing to concerns

about the comparison of absolute values with the one-

wavelength method and its ability to deal with non-

uniform fluorophore distribution.34 However, in this

study we are not comparing absolute values as would be

the case in a population-based study, we are comparing

the similarity between pairs of individuals. This study is,

therefore, less susceptible to the drawbacks of the

methodology.

FAF images were only obtained from those twins

examined in clinics where a HRA-2 was available. A

retinal area 301� 301 centred on the fovea was recorded

digitally at 256� 256 pixel (5 mm/pixel) and 256-level

grey-scale resolution. The images obtained were

anonymized and analysed at the Institute of

Ophthalmology in London. The anonymization was such

that it prevented the grader from knowing which

subjects were pairs.

Image preprocessing and analysis

Image sets were graded manually on a scale: 1 (worst

quality) to 5 (best quality) by comparing with a set of

standards, those graded 3 and above were included in

the analysis.
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All images were aligned according to structural

landmarks (ie, retinal blood vessels for images of the

same eye, and the optic disc head for images of different

eyes) using Picture Window Pro 4.0 (Digital Light &

Colour, Belmont, MA, USA) to ensure that the images

being compared were as closely aligned as possible. The

images were then cropped to a standard size of 420� 420

pixels to account for the differences in alignment.

All the images were adjusted for brightness,

contrast and noise using a customized programme

‘enhance_contrast.m’ (MatLab 7.0.1, MathWorks Inc.,

Natick, MA, USA). Contrast was enhanced using

histogram stretching whereby the range of intensity

values is stretched so that it spans the full range from

0–255. Taking 7� 7 pixel boxes and averaging the

number of pixels in each box removed noise.

Calculation of the SDMP using autofluorescence imaging

The FAF images were obtained using a HRA-2 cSLO that

illuminated the fundus with an argon laser radiation at

488 nm. As MP is located in the nerve fibre layer of the

retina, it blocks the fluorescence coming from the

underlying RPE so that the intensity of the 488 nm laser

exciting radiation is reduced in regions of the retina

where MP is located. These areas appear dark in the

image. In order to analyse the topographic distribution of

MP in FAF images, a computer programme (MatLab

7.0.1, MathWorks Inc.) was designed to carry out the

following process: the topographic distribution of FAF

across the retina was measured using a grey-scale index

of intensity (0–255 units) along the horizontal and

vertical meridians, intersecting at the foveal pixel.

(Figure 1) This required a single observer to select the

centre of the fovea, after which a 71 radius circle was

drawn around the foveal centre and mean values were

calculated out to 71 in 20� 20 pixel blocks along the

horizontal and vertical profiles. This eccentricity was

chosen to encompass the area within which measurable

MP has been shown to occur (Bone et al24 demonstrated

that at 71 the level drops to 3% of peak height and

concluded that beyond 71 the level could be practically

considered as zero).

Relative optical density was calculated as log (R7/R),

where R7 is the radiance equivalent of the mean grey-

scale value at 71 and R is the radiance equivalent value at

any eccentricity. R7 was calculated from the mean of 1016

pixels, arranged in a 1-pixel wide 71 circle centred on the

fovea. This functioned to reduce the effect of artifacts

due to retinal blood vessels, which in some subjects

encroached on the pigmented area of the macula,

producing a negative optical density value. Optical

density values were also scaled by a factor of 1.28 in

order to compensate for the difference between MP

absorbance at 488 and 460 nm.35 Relative MP optical

density (MPD) values were calculated for the horizontal

and vertical meridians from the FAF images. The values

were then exported into Sigmaplot 7.0 (Systat Software,

Inc., Richmond, CA, USA) to plot the MP spatial

distribution profile horizontally (SDMP). The vertical

optical density profile was not plotted as vertical

meridians often intersected vascular arcades, causing

frequent localized peaks in intensity along the arms of

distribution curves that interfered with the results. A

curve of best fit was drawn according to the horizontal

MP spatial distribution profile and two values were

measured: (a) relative PMPD (rPMPD) and (b) relative

SDMP (rSDMP), which is represented by the width of the

curve at half peak (Figure 2).

7˚ (1˚ = 20x20 pixels)

User selects centre of
fovea

Horizontal profile

Vertical profile

Figure 1 MP density measured in a 71 radius from the centre of
the fovea.
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Figure 2 Graph of MP spectral profile (horizontal) explaining
‘a’ (rPMPD) and ‘b’ (rSDMP) values.
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Statistical analysis

Data analysis and statistical tests were performed using

SPSS 16.0 (SPSS Inc., Chicago, IL, USA). Parametric and

nonparametric tests were used to compare continuous

variables according to data distribution, and relevant

graphs were drawn. Relative PMPD and relative SDMP

were assessed using t-tests and the association between

twin pairs was considered using correlation statistics

(Pearson product moment). A nonparametric bootstrap

procedure written in MatLab (MatLab 7.0.1, MathWorks

Inc.), which has been described previously31 was used to

determine the Pearson product moment correlation

coefficients. This enables more robust estimation of

parameters in smaller samples. Regression analysis was

carried out to investigate the relationship between age

relative to rPMPD and relative to rSDMP.

Results

Demographics

A total of 708 twins (354 pairs) participated in the overall

AMD twin study; however, only a subset took part in this

component as the SLO was located in only one of the

data collection clinics. A total of 86 subjects (see Table 1)

or 43 twin pairs (21 MZ and 22 DZ) (27 male, 59 female)

aged from 55 to 76 years (mean 62.2±5.3 years) had

high-quality gradable images (Zgrade 3). Just under

half of the sample (37 out of 86, 43%) presented with

features of early AMD (drusen Z63 mm or pigmentary

irregularities). There were 17 twin pairs in whom both

twins had normal fundi, 15 twin pairs where 1 twin had

early AMD (drusen and pigmentary change), and 11 twin

pairs where both were diagnosed with early AMD. Early

AMD concordance rates were 29% in MZ twin pairs and

23% in DZ twin pairs. There were no significant

differences between MZ and DZ pairs based on

demographics (Table 1).

Analysis of MP density and distribution

Measurements of rPMPD (a) and rSDMP (b) in each

individual’s left and right eyes correlated significantly,

with an intraclass correlation (r) of 0.86 (Po0.001) for a

and 0.77 (Po0.001) for b. Similar values of rPMPD (right,

0.351±0.103; left, 0.358±0.127) and rSDMP (right,

1.75±0.398; left, 1.76±0.369) were obtained for the right

and left eyes and showed no statistical difference.

Therefore, in subsequent analysis we only used the right

eyes of each individual to avoid introducing error into

the analysis of comparisons between twins. Figure 3

shows the typical profiles for a pair of MZ and DZ twins,

illustrating the close correlation in rPMPD in the MZ pair

compared with the DZ pair.

An independent samples t-test was used to compare

rPMPD values. There was a significant difference

(P¼ 0.033; mean difference 0.043±0.020) between MZ

(mean, 0.373±0.106) and DZ (mean, 0.330±0.756) twin

pairs. When comparing rPMPD within pairs a

significantly higher correlation was found within MZ

pairs as compared with that within DZ pairs, represented

by Pearson correlations (r) of 0.99, 95% confidence

intervals (95% CI) 0.93 to 1.00) and 0.22 (95% CI � 0.34

to 0.71), respectively (Figure 4).

rSDMP was similar for MZ and DZ twin pairs

(P¼ 0.551; mean difference, 0.047±0.079). rSDMP

showed a slightly higher correlation within DZ twin

pairs (r¼ 0.63; 95% CI 0.32 to 0.83) than MZ twin pairs

(r¼ 0.48; 95% CI � 0.02 to 0.83), although this difference

was not statistically significant (Figure 4). Thus, rSDMP

is unlikely to have a large genetic contribution.

To investigate the relationship of MPD with age, one

subject from each twin pair was randomly selected to

avoid bias due to their family relationship. Overall, no

significant correlation was evident between rPMPD

density and age (r2¼ 0.047, P¼ 0.763) or rSDMP

(r2¼ 0.007, P¼ 0.591). These relationships remained the

same when zygosity or AMD status was taken into

account.

Using the same form of analysis as for age, no

difference between any of the MP parameters was noted

when those with normal maculae were compared with

those with early AMD (rPMPD 0.36 vs 0.34, t¼ 1.18

P¼ 0.243, rSDMP 1.75 vs 1.75, t¼ 0.028 P¼ 0.977). These

relationships remained when zygosity or age were

accounted for as well.

Discussion

This study demonstrates the large contribution genetic

factors have in determining PMPD. Our results show that

rPMPD values are more highly correlated in MZ twins

than DZ twins than those for rSDMP. Our findings on the

heritability of PMPD are consistent with those of Liew

et al (MZr¼ 0.65, DZr¼ 0.24, and heritability estimates of

0.67 for heterochromatic flicker photometry whereas

MZr¼ 0.83, DZr¼ 0.50, and heritability estimates of

Table 1 Twin demographic characteristics

MZ
(n¼ 42,
21 pairs)

DZ
(n¼ 44,
22 pairs)

MZ vs DZ
(t-test or w2)

Mean age (SD) 62.2 62.0 0.862
Gender (male) 14 13 0.817
Early AMD present 18 19 1.000
Ever smoked 9 11 0.800
Cataract operation 3 5 0.330
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0.85 for FAF images).21 Although substantial heritability

has been reported by other studies focusing at

anatomical ocular structures such as macular thickness,32

optic nerve head biometry,36 and cup-to-disc ratio,37 the

striking concordance noted between MZ twin pairs for

rPMPD (Figure 4) is somewhat surprising, given the
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Figure 3 Typical MP spectral profiles for MZ (left) and DZ (right) twins. A closer correlation is observed in the profiles of MZ twins
than DZ twins. Twin 1 upper, twin 2 lower.
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large emphasis placed on environmental factors such as

diet and supplementation in the general MP literature.

Taken with the previous reports of heritability in excess

of 70%, these findings suggest that genetic factors exert

an overwhelming influence on the amount of MP that is

deposited in the eye. Given that several specific

xanthrophyll-binding proteins have been identified,38,39

including the Pi isoform of gluthathione S-transferase,38

it is possible that specific polymorphisms may exist that

influence the uptake, metabolism or deposition of L and

Z. Indeed, genetic factors are likely to account for part of

the variance unaccounted for in studies investigating the

relationships between dietary, serum, and macular

carotenoid concentrations.

We did not find evidence to suggest that the SDMP

was genetically determined, implying that the

distribution of MP might be more influenced by other

lifestyle risk factors, and thus possibly more able to be

manipulated though diet. The high degree of intersubject

variability in spatial distribution is also consistent with

this interpretation. This is the first study to evaluate the

heritability of the spatial profile. Liew et al21 reported that

MZ profiles tended to look more alike than DZ profiles,

suggesting a possible genetic influence, but did not

subject it to formal analysis. A recent population-based

study that looked specifically at the spatial profile of MP

using dual-wavelength analysis of autofluorescence

images found that a ring-like structure of MP was

present in almost 20% of the participants, tended to be

bilateral and was significantly more common in females

and never smokers.40

Although substantial progress has been made in

understanding mechanisms involved in the uptake,

metabolism, and deposition of L and Z,39,41 it is clearly a

complex process. The ratio of L/Z/meso-zeaxanthin

varies with retinal profile with Z predominant at the

central peak and L predominant in the peripheral retina.

Meso-zeaxanthin, a stereoisomer of Z not normally

present in diet or serum reaches its peak at the point

in the retina where L/Z ratio is at a minimum and is

considered a metabolic product of L.42 These are all

known to differ in terms of antioxidant capacity, their

localization within cells and the binding proteins

associated with their deposition. It is not unreasonable

to imagine that the impact of processes that either

augment or deplete their concentration could vary

with eccentricity as the ratio of L/Z/Meso-Z changes.

Indeed, several studies focusing at the spatial profile

of MP in response to supplementation have shown that

MP is not augmented equally across the retina43 and

appears to be deposited more in peripheral locations,

demonstrating that SDMP can be altered by

environmental manipulation which is consistent with

our findings. However, the potential impact on macular

health of being able to manipulate the SDMP is not

at all clear.

In the analysis of the age relationship with MP we

were unable to find any significant association between

age and both optical density and spatial distribution. The

results of previous studies investigating this relationship

have also been inconsistent.7,9,44,45

When rPMPD and rSDMP were compared in those

with early AMD and those without, we did not find any

significant difference, which is in keeping with the

literature to date as with the exception of a few

studies,6–8 most studies comparing those with drusen

and those without have been unable to find a

cross-sectional association,9–11 including the large

carotenoids in Age-Related Eye Disease Study

(n¼ 1698).10

Our study also demonstrated the ability to rapidly

measure both MP optical density and spatial distribution

from a single AF image; however, there are some

difficulties present with regard to measuring MP from

FAF images using the one-wavelength method. The

technique is based on the assumption that the quantity of

FAF in the absence of MP has a uniform distribution

across the field, which is not the case in vivo. Thus,

heterogeneous redistributions of lipofuscin fluorophores

could be misinterpreted as absolute changes in MP

distribution. Additionally, previous studies utilizing this

method34,46 have reported that on the basis of different

absorption characteristics of other fluorophores such as

melanin in the RPE and haemoglobin, the amount and

allocation of MP could be overestimated. Areas of

low MP density are especially prone.47 However, all our

images were subject to the same limitations and it should

not detract from our overall conclusions about trends in

hereditability of MP in MZ and DZ twins. The strength

inherent of a classic twin study rests on the utility

of reproducible techniques for all subjects and the

conclusions are determined by the relative nature

of the readings rather than absolute levels.

The small number of twin pairs resulting from the

initial triage of participation owing to the location of the

machine should not have introduced bias. The small

numbers not only limited the power of our study but

prevented us from undertaking structural equation

modelling to ascertain full heritability. However, the

bootstrapping procedure, which we also used in a

previous study,31 enables robust parameter estimates

to be calculated from small samples48 and makes no

prior assumptions as to the distribution of the

population.48,49

Additionally, although best efforts were made to match

image quality by image processing, other factors such as

media opacities (eg, cataracts) that decrease the FAF

image contrast and the uneven distribution of fundus
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illumination may affect readings of the mean SE, which

compares the fundamental differences between two

images. However, our mean MP optical density of

0.35±0.096 using our one-wavelength autofluorescence

method, which measured MP optical density at

1% eccentricity from the foveal centre, correlates

well with that of Robson et al47 (0.37±0.11), who also

used FAF imaging and an identical MP density

calculation programme, though slightly lower than

those reported by the previous twin study that also

used auto fluorescence (0.27±0.10).21 Twin subjects’

values for PMPD and spatial distribution covered a wide

range, which is consistent with many studies that have

reported considerable interindividual variability in both

variables.

Within the overall twin study all participants

underwent slit lamp evaluation at examination and

cataracts were graded using the Wilmer system of

grading lens opacities and each participant was given a

nuclear opacity grading score ranging from 1 to 4, with 4

being the greatest opacity.50 Although a recent study

reported the potential impact of nuclear cataract on MP

measurements using autofluorescence,51 we did not

attempt adjust for lens status in our analysis as all of the

participants had a central cataract grading of either 1 or 2

with no difference in the concordance of grades between

MZ and DZ (MZ and DZ) (data not shown). Given the

low levels of cataract present and the fact that any twin

pair would not differ by more than one grade, it is

unlikely that lens status could account for the findings in

this study.

In this same cohort of twins we have also reported

on the hereditability of macular thickness32 as well as

performance on several psychophysical retinal visual

function tests.31 We found that although the ability to see

colour and flicker thresholds were strongly inherited, the

dark adaptation curve was not. We interpreted these

findings to imply that changes in Bruch’s membrane,

which are thought to dictate the flux of vitamin A

derivatives to the RPE and photoreceptors, and thus

impact on dark adaptation, are also not particularly

influenced by genes and thus potentially able to be

altered through environmental changes. Thus, we have

found that both Bruch’s membrane changes and the

distribution of macular pigment are not strongly

influenced by genetic differences even though the

disease itself is considered highly influenced by

genetic polymorphisms in several well-characterized

genes.52–54 Thus, these two parameters, which are

potentially very important influences on the

development of AMD may be able to be influenced

through lifestyle choices, and thus amenable to

therapeutic intervention such as dietary changes and oral

supplementation.

Summary

What was known before

K Levels of MP vary widely within the normal population.

K The spatial profile of MP varies widely as well.

K The reasons for the variation are not well understood.

What this study adds

K Confirms that the peak density of MP is highly heritable.

K Demonstrates for the first time that the spatial profile is
heavily influenced by environmental factors rather than
genetics.
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