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Abstract

Neovascularisation is a major cause of visual

loss in a number of ophthalmic diseases. This

review aims to outline the basic regulators of

vessel growth in corneal neovascularisation.

An understanding of the underlying

principles of physiological and

pathophysiological vascular development

helps to appreciate current approaches to

prevent or treat corneal neovascularisation.

Options for future interventions will be

discussed in the light of recent evidence

provided by animal models of corneal

neovascularisation.
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Introduction

Our ability to see is a highly specialised

function, which relies on sophisticated

architecture of the human eye. Each ocular

structure or tissue has distinct properties and

tasks F this pertains also to the vasculature.

The perfectly organised vascular tree of the

retinal circulation and the avascularity of the

cornea serve as examples. Where the delicate

homeostasis of vessel growth and inhibition is

disturbed, neoformation of blood vessels in

areas that were previously avascular can

disrupt visual function and cause disease.

Indeed, abnormal vascularisation underlies or

accompanies some important ocular pathologies,

including the neovascular form of age-related

macular degeneration, proliferative diabetic

retinopathy, retinopathy of prematurity, retinal

vein occlusion, and corneal neovascularisation.

The public health impact of ocular

neovascularisation therefore is significant.1

Michaelson2,3 was the first to suggest that a

diffusible factor liberated by retinal or corneal

tissue would stimulate vascular growth and

development.2,3 Subsequently, a number of

factors to activate and guide healthy or

pathological vascularisation were identified.

This review intends to provide an overview of

important factors and potential therapeutic

targets in the context of corneal

neovascularisation.

Vascular growth during development entails

vasculogenesis and angiogenesis

During ontogenesis, de novo formation of a

capillary lattice occurs within each organ by a

process referred to as vasculogenesis.4,5 This

involves blood vessel precursor cells called

angioblasts, sharing with haematopoietic cells a

common progenitor of mesodermal origin, the

haemangioblast.6 Aggregates of angioblasts

differentiate into endothelial cells (ECs) that line

a lumen containing blood precursor cells.

Fusion of these ‘blood islands’ forms the

so-called primary capillary plexus.

Subsequently, additional vessels are formed

and the primitive network is remodelled

through a process termed angiogenesis. It

entails sprouting and intussusception

(splitting), functional maturation of ECs, and

recruitment of smooth muscle cells or pericytes.

This also lends primitive vessels the distinct

properties of arteries and veins.5

To enable sprouting from pre-established

vessels, cell–cell contacts between ECs are

loosened, and the extracellular matrix (ECM) is

degraded.7 ECs can then extend filopodia,

migrate, and lead vascular growth in response

to gradients of environmental mitogens.8

Promotion and inhibition of vascularisation is

orchestrated with the help of such pro- and

antiangiogenic mediators, both during and after

development.9,10 Vasculogenesis is seen
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predominantly during embryogenesis, whereas

angiogenesis occurs also in adults in the context of

wound healing, pregnancy, and uterine cycling.11

However, angiogenesis has also been found to have a

major role in pathological processes such as tumour

growth and metastasis, as well as ocular

neovascularisation (Figure 1).10,12 Mechanisms and

mediators of pathologic angiogenesis are thought to

differ somewhat from physiological angiogenesis,

exemplified by the fact that the latter does not usually

carry an inflammatory component.13 In a rat model,

angiogenesis has been identified as the underlying

mechanism of corneal neovascularisation. Here, initial

events are vasodilation of the limbal vessels and

recruitment of leucocytes (which release additional

pro-angiogenic mediators), followed by vascular

sprouts, which emerge from pericorneal venules and

capillaries.14

Corneal avascularity is the result of an active regulatory

process

Although vascularisation is vital for the survival of most

tissues, some structures require avascularity to ensure

proper functioning. These include cartilage, heart valves,

and in the eye cornea, vitreous and lens.15–18 In these

tissues, mechanisms are in place to inhibit ingrowth of

blood vessels. To maintain what has been termed the

‘angiogenic privilege’ in the cornea, a delicate balance

exists between pro- and antiangiogenic factors (Figure 2).

Pro-angiogenic factors include fibroblast growth factor

(FGF), vascular endothelial growth factor (VEGF),

platelet-derived growth factor (PDGF), and angiopoietin,

among others. Factors with antiangiogenic properties

include endostatin, angiostatin, thrombospondin,

pigment epithelium-derived factor, and others.19 Their

balance is actively maintained, as exemplified by
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VEGFR2
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PDGFR
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Tumour
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Figure 1 Soluble angiogenic factors are released from tumour cells to induce and regulate key steps in angiogenesis. Many of these
factors have also been found to have a role in ocular and, more specifically, corneal neovascularisation. Angiopoietin-1 binds to
endothelial Tie-2 receptors to stabilise the established vasculature. Angiopoietin-2, however, which is secreted by tumour cells, and
which competes with angiopoietin-1 for the Tie-2 receptor, increases vascular basal membrane degradation and EC migration. Vascular
endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) may also be
secreted by tumour cells, and exert pro-angiogenic effects via their respective EC receptors (with VEGF-receptors requiring assistance
from neuropilins). Tumours or ECs may also release matrix metalloproteinases (MMPs). These have some pro-angiogenic effects, but
also cleave antiangiogenic endostatin from collagen XVIII of the extracellular matrix, and angiostatin from circulating plasminogen
(not depicted; adapted from Folkman,100 with permission from Macmillan Publishers Ltd).
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evidence, showing that after corneal injury,

antiangiogenic factors are upregulated to maintain

corneal avascularity.20 However, these mechanisms are

not fail-proof, and numerous clinical conditions are

known to involve ingrowth of vessels into the corneal

tissue. Most pathological processes of the cornea that

lead to vascularisation can be assigned to one of the three

main categories: hypoxic (mainly contact lens wear),

inflammatory (eg, infectious keratitis or corneal graft

rejection), and loss of limbal barrier function (limbal stem

cell deficiency, for instance, due to aniridia).21–23

Presence of aberrant vessels in turn increases corneal

oedema and leads to lipid deposition, haemorrhage, and

scarring, further compromising corneal transparency and

visual acuity.24 Neovascularisation also increases the rate

of failure and rejection of corneal grafts.25 This has been

attributed, at least in part, to clinically invisible

lymphatic vessels, which abrogate the immunological

privilege of the cornea.26,27

Although aetiologies of corneal neovascularisation

vary, the common endpoint is a breakdown of the

angiogenic privilege.28 The following sections briefly

characterise a selection of prominent pro- and

antiangiogenic mediators, which may threaten or

maintain this privilege.

Pro-angiogenic factors in the cornea

VEGF has been shown to be a key mediator of

vasculogenesis and angiogenesis.29,30 Its important

contribution to vascular development is reflected in the

fact that the deletion of a single VEGF allele is lethal in

the mouse embryo.31 Members of the VEGF family

promote a number of steps in the process of

angiogenesis, including proteolytic activities, vascular

EC proliferation and migration, inhibition of EC

apoptosis, and recruitment of EC precursors.28,32

Particularly VEGF-A is a potent survival factor and

mitogen for ECs.33 It binds the tyrosine kinase receptors

VEGFR-1 and VEGFR-2, with the pro-angiogenic signal

being conveyed predominantly via VEGFR-2 in many

tissues.34 Involvement of VEGF-A in corneal vessel

growth was demonstrated in animal models of corneal

neovascularisation, using VEGF-A blocking monoclonal

antibodies; when implanted into the corneal stroma,

these inhibit neovascularisation.35,36

VEGF-C and VEGF-D, acting via VEGFR-3, make

important contributions to growth and development of

lymphatic vessels. Indeed, antibodies against VEGFR-3

specifically block lymphangiogenesis in the cornea.37

Expression of VEGF is increased by hypoxia and

inflammation.38,39 Hence, it is upregulated in the cornea

following hypoxic injury, ocular wounding, and during

acute inflammation in different animal models.36,40,41

FGF is a heparin-binding peptide, which stimulates

migration and proliferation of ECs.42,43 FGF binds to ECs

of corneal blood and lymphatic vessels.44 Ellenberg et al19

demonstrated a role of FGF in promoting corneal

angiogenesis, and suggested this to occur via

upregulation of VEGF. Indeed, interplay between VEGF

and FGF was proposed to occur at the receptoral and

postreceptoral level.45,46 One factor involved in linking

the two pathways may be membrane-type 1 matrix

metalloproteinase (MMP). Membrane-type 1 MMP was

shown to increase FGF-induced VEGF upregulation and

corneal neovascularisation in a mouse model and in an

in vitro model.47

In fact, MMPs appear to be involved in angiogenesis in

the most varied ways. For instance, apart from their

general abilities to remodel the ECM and pave the way

for growing vessels, MMP-9 releases VEGF from the

ECM.48 However, antiangiogenic properties have also

been detected for MMPs, as will be discussed below.

PDGF acts to stabilise vessels by attracting pericyte

progenitor cells.49,50 It has been suggested that VEGF

antagonists are more effective in vessels which lack

pericytes.51 Hence, a combination of VEGF- and PDGF-

antagonists could be envisaged to inhibit

neovascularisation. Indeed, blocking both VEGF and

PDGF pathways was more effective in inhibiting corneal

neovascularisation in rabbits than VEGF pathway

blockade alone.52

Angiopoietins are protein growth factors whose action

(via the tyrosine kinase receptor Tie-2) is required for

formation of mature blood vessels.9 Angiopoietin-1 and

Figure 2 The ‘angiogenic switch’ hypothesis. In health or mild
disease, pro-angiogenic factors are counteracted by the inhibi-
tors of angiogenesis. Quiescent vasculature is stimulated to
cause neovascularisation, if increasing levels of activators of
angiogenesis tilt the balance towards vessel growth. Likewise,
increased presence of inhibiting factors or removal of activators
can tilt it back towards maintaining avascularity. VEGF, vascular
endothelial growth factor; bFGF, basic fibroblast growth factor;
PDGF, platelet-derived growth factor; sVEGFR1, soluble VEGF
receptor 1. (Adapted from Hanahan and Folkman,12 with
permission from Elsevier).
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angiopoietin-2 were found to modulate sensitivity to

VEGF (Figure 1).53 In the cornea, inhibition of

angiopoietin-2 suppressed angiogenesis; however,

additional inhibition of angiopoietin-1 yielded no further

suppression of angiogenesis.54

Antiangiogenic factors in the cornea

To counteract vasoproliferative effects of VEGF-A,

soluble forms of VEGFR-1 are expressed by corneal

epithelium.55 Ambati et al55 showed that in the absence of

soluble VEGFR-1, mice develop corneal neovascularisation.

Furthermore, VEGFR-1 is expressed in healthy human

corneal epithelium, whereas in neovascularised human

corneas, VEGFR-1 expression is significantly reduced.56

In addition, VEGFR-3 is ectopically expressed in

corneal epithelium.57 This acts as a decoy mechanism to

neutralise VEGF-C and VEGF-D, classically regarded as

lymphangiogenic factors.

A protein showing structural relationship to hypoxia-

inducible transcription factors (HIF) has been reported to

impair HIF1a-mediated expression of VEGF.58 Mouse

corneal epithelial cells strongly expressed this protein

in vitro, particularly under hypoxic conditions. In these

cells, expression of VEGF was low even under hypoxic

conditions, but increased when the HIF-related protein

was antagonised. In vivo, antagonisation induced

neovascularisation already at normal levels of oxygen,

suggesting an important role in maintaining corneal

avascularity.

Pigment epithelium-derived factor has been identified

as an important factor opposing ocular angiogenesis.59

It is expressed in the corneal tissue,60 and was detected

in human tear fluid.61

The antiangiogenic properties of angiostatin, a

fragment of plasminogen, were first shown in the context

of tumour growth and metastasis.62 Presence of

angiostatin was demonstrated in human corneal

epithelium,63 and in mouse corneas during wound

healing.20 It was found to inhibit corneal

neovascularisation in different rodent models.64

Endostatin is a fragment of collagen XVIII, which

induces EC apoptosis,65 and which is present in human

cornea.66 MMPs were reported to be involved in

generating endostatin via cleavage of collagen;67 together

with pro-angiogenic properties of these proteolytic

enzymes (vide supra), this exemplifies their ambiguous

role in angiogenesis.

Thrombospondins are matricellular proteins able

to inhibit migration and survival of vascular ECs.68

They are expressed in the normal cornea, and both

thrombospondin-1 and thrombospondin-2 were

found to suppress the inflammation-induced

corneal neovascularisation in rodents.69,70

Current therapeutic approaches towards corneal

neovascularisation

The method of choice to treat corneal neovascularisation

depends on the state of maturation of these vessels.

Mature vessels often no longer rely on angiogenic

mediators.71,72 Here, surgical interventions such as

fine-needle cauterisation, first reported by Pillai et al,73

may constitute the most effective treatment. However,

during active vessel growth, pharmacological manipulation

of molecular cues for vascular ECs suggests itself as

a therapeutic approach. It has been suggested from

ultrastructural and immunohistochemical analysis of

vascularised human corneas that vessel maturation by

pericyte recruitment may occur within less than 2 weeks

after clinical diagnosis of corneal neovascularisation.74

This is likely to limit the time-frame available for

successful antiangiogenic therapy. However, blockade of

angiogenic growth factors may still be beneficial to

prevent further sprouting of vascular ECs in cases in

which the angiogenic stimulus persists.

Table 1 provides an overview of current indications for

antiangiogenic therapy at the cornea. Anti-inflammatory

agents (eg, steroids, cyclosporine A) are a classic means

to suppress corneal inflammation and corneal

neovascularisation.75 On top of their anti-inflammatory

properties, steroids have been shown to inhibit

proliferation and migration of vascular ECs.19 Using a

rodent model to compare anti-lymphangiogenic effects of

different topically applied corticosteroids, the strongest

effect was measured for prednisolone, which may

therefore render this substance particularly suitable to

Table 1 Current indications for antiangiogenic therapya at the
cornea (adapted from Cursiefen et al23)

Infectious keratitis Herpetic
Bacterial
Fungal
Parasitic

Inflammatory
conditions

Mucous membrane pemphigoid

Atopic conjunctivitis
Rosacea
Lyell’s syndrome
Stevens–Johnson syndrome

Corneal graft Preoperative conditioning
Postoperative prevention of graft
rejection/failure

Loss of limbal
barrier function

Limbal stem cell deficiency

Corneal burns or other injury

aNote that antiangiogenic therapy does not exclude or replace treating the

cause of the underlying condition, where applicable.87

Corneal neovascularisation: emerging treatments
J Menzel-Severing

5

Eye



prevent rejection of corneal allografts.76 However, side

effects of steroids are an important cause of ocular

complications, whereas efficacy in cases of non-

inflammatory-mediated corneal neovascularisation is

limited. Hence, it appears desirable to target molecular

factors of corneal angiogenesis more selectively, as occurs

already in cancer treatment outside the eye and in

macular disease. This field is currently emerging;

important milestones are pointed out in the following

section.

Translational aspects of corneal angiogenesis and

clinical experience with novel therapies

In 1971, Folkman77 published a seminal article in which

he suggested that tumour growth depended on

angiogenesis, making it a suitable target for therapeutic

interventions. Some of the work leading to this

hypothesis, and much of the work undertaken since,

used the cornea as an experimental model. Because of its

angiogenic privilege, the cornea is suitable to show

vessel-inducing effects of tumour cells or putative pro- or

antiangiogenic factors in vivo.78

It is worth stressing that despite similarities, vascular

growth may slightly differ between distinct anatomic

locations.79,80 For instance, VEGFR-1 acts as a decoy

receptor in the cornea, but induces neovascularisation

in the retina, as shown by reduction of retinal

neovascularisation upon experimental disruption of

VEGFR-1.81 Overall, the natural avascularity of the

cornea makes it quite an atypical environment to study

vascular development.82

Nevertheless, experimental data from corneal

angiogenesis assays contributed to the development of

antiangiogenic drugs such as VEGF-inhibitors, which

have been formally approved for cancer treatment, and

form the mainstay for treating neovascular age-related

macular degeneration.75

Curiously, development of specific antiangiogenic

agents for clinical use in the anterior ocular segment

remains at a less advanced stage, and use of available

agents occurs ‘off-label’. Actively growing vascular

sprouts can be targeted using topical application of

VEGF-inhibitors such as the humanised monoclonal

antibody bevacizumab, initially approved for the

treatment of metastatic colorectal cancer.72 The use of this

and structurally related anti-VEGF antibodies have

shown clinical effects in the anterior segment of the eye.

A Medline search identifies a number of case series

reporting the clinical use of bevacizumab in corneal

neovascularisation (Table 2). At large, these studies

suggest regression of neovascularisation following

anti-VEGF treatment. This is despite the considerable

variability in the treatment regimens used, and in the

nature and severity of the conditions treated. Although

most reports conclude that topical anti-VEGF therapy for

corneal neovascularisation appears safe, adverse effects

such as corneal thinning and reduced epithelial healing

have also been acknowledged.83 These may be due to

neurotrophic effects of VEGF, leading to reduction of the

numerous corneal nerves when VEGF is inhibited.84

Currently, no data from randomised controlled clinical

trials is available. Such studies are warranted to confirm

safety and efficacy of these anti-VEGF treatment for

corneal neovascularisation, with inhibition of corneal

neovascularisation having been proposed as a clinically

relevant endpoint.23

The only antiangiogenic compound for corneal

neovascular disease, which has reached a controlled

clinical testing, is an antisense oligonucleotide, designed

to inhibit the expression of insulin receptor substrate-1

(IRS-1).85 IRSs are cytosolic adaptor proteins involved in

the organisation of growth hormone and cytokine

receptor signalling. Pre-clinical studies had shown

targeting IRS-1 to inhibit corneal neovascularisation in

rats, possibly mediated via downregulation of

interleukin-1b.86 Currently, this antisense oligonucleotide

against IRS-1 is being investigated in a phase III clinical

trial to determine its clinical value for topical inhibition

of corneal neovascularisation.85,87

This example points out that, apart from

administration of neutralising antibodies, targeting gene

expression has now received some attention as a

potential means to control corneal angiogenic and

antiangiogenic mediators. Recent evidence from this field

of study will be discussed next.

Future therapies may rely on local gene therapy to

influence (anti-)angiogenic factors

With more knowledge now available regarding

mediators of angiogenesis, targeting these pathways by

gene therapy emerges as a promising means of fighting

neovascularisation in the eye.28 This approach has been

taken into clinical testing for subfoveal choroidal

neovascularisation,80 with the anterior segment now

striving to follow suit. Here, injection of an adenovirus

vector encoding a soluble Tie-2 receptor inhibited

neovascularisation in a mouse model of corneal injury.88

In a similar vein, ex vivo transduction of corneal tissue

with a lentivirus containing the human endostatin gene

has been proposed as a viable method to prevent corneal

graft neovascularisation and subsequent rejection in

high-risk corneal transplants.89 Adenovirus-mediated

transduction of corneal ECs with soluble VEGFR-1

successfully inhibited corneal neovascularisation in a

rodent model.90 The same group also used adeno-

associated virus to reduce the development of
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experimental corneal neovascularisation.91 A somewhat

different approach uses intracorneal gene therapy to

express VEGFR-1 intracellularly, leading to disruption of

autocrine feedback loops, decreased VEGF secretion, and

inhibition of neovascularisation.92 This group was also

able to show viability gene transfer for the same receptor

using a non-viral vector.93 Another non-viral method

employed experimentally for corneal antiangiogenic

gene therapy was electroporation.94 Small interfering

RNA (siRNA) constitutes another promising technique,

which can be used locally in the eye to silence relevant

genes.95 Here, difficulties may arise when it comes to

determining an effective target sequence. Despite the

help of online tools, the best siRNA sequence currently

needs to be selected empirically.28 Nevertheless, siRNA

targeting VEGF-A and/or its receptors was successfully

shown to inhibit inflammation-induced corneal

neovascularisation in mice.96

Interestingly, amidst all the efforts to counteract

corneal neovascularisation, some authors have chosen to

use gene transfer to promote corneal angiogenesis.97–99

Here, induced corneal neovascularisation serves as an

assay to investigate the efficacy of gene transfer to the

cornea or indeed the impact of the transfected pro-

angiogenic gene on corneal angiogenic privilege.

Through these efforts, data obtained in the cornea may

F once again F support the endeavour to promote

angiogenesis as a therapeutic approach towards

ischaemic disorders elsewhere.

Conclusions

Corneal neovascularisation is one out of a multitude of

angiogenesis-dependent diseases.100 Although many of

the early studies on tumour angiogenesis were carried

out using the angiogenic privilege of the cornea as a

model system,101,102 anticancer drugs such as

bevacizumab are now proving to be of benefit for the

treatment of corneal disease.103 However, clinical data on

safety and efficacy of bevacizumab is currently limited to

non-randomised, largely non-comparative case series,

and antiangiogenic agents developed and approved

specifically for corneal neovascularisation are not yet

available.

The relative accessibility and segregation of the ocular

compartment makes it a good candidate for local gene

therapy.80 A plethora of in vivo studies to test this

approach have been carried out in recent years, so far

yielding at least one multicenter trial that aims to bring a

specific corneal angiogenesis inhibitor into the

ophthalmic clinic.85 Future challenges include the

achievement of successful delivery and stable expression

of therapeutic genes.104T
a
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In summary, increased understanding of molecules

relevant in vascular development is on the cusp of

translating into specific therapeutic agents, which

will be useful in the ophthalmic clinic to specifically

target angiogenesis, and treat or prevent corneal

neovascularisation. In this context, randomised

controlled trials to establish safe and effective

treatment regimens for these agents are obligatory.
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52 Pérez-Santonja JJ, Campos-Mollo E, Lledó-Riquelme M,
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