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Abstract

Purpose The aim of this paper is to provide

an overview of sample size estimations for the

most frequent type of group studies that result

in continuous, binary and ordered categorical

outcomes.

Methods The theory behind power and

sample size calculations is explained using the

basic probability concepts that underpin the

most frequently used statistical significance

tests.

Results Simple formulae and tables are

presented for the estimation of sample sizes

necessary for efficient and effective clinical

and epidemiological trials. These may be used

without recourse to sophisticated and complex

computer software packages. Mathematical

complexity is kept to a minimum. Examples

and applications from the vision sciences are

specifically highlighted.

Conclusions The paper highlights, with

practical examples, the concepts and

computations necessary to make sample size

estimations accessible to all eye professionals

involved in research, diagnostic and statutory

work.
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Introduction

In recent years, Research Ethics Committees

have paid increasing attention to the numbers

required for the conduct of efficient research

proposals from universities, official government

research institutes, and private industrial

organisations. Grant proposal forms also

frequently include a section on the justification

for sample size numbers proposed for clinical

and epidemiological trials. Many research

publications incorporating quantitative and

qualitative data also demand consideration of

appropriate sample sizes for adequate analysis

and reporting.

A substantive number of papers1–5 have been

published with the objective of elucidating the

calculations required for sample size estimation.

The quoted references form a small proportion

of the literature on the subject. Such work

describes the basis of the necessary

computations that rely on the fundamental

concepts of probability, statistical significance,

clinically meaningful differences, and the subtle

concept of statistical power, the probability of

detecting such differences. The latter is

intimately and intricately linked to sample size

estimation.

Although the subject area has been

comprehensively dealt with in many research

applications, there has tended to be a deficit of

attention paid to it in some vision science

research. This paper has the objective of

elucidating the underlying concepts of power

calculations and their specific application to

vision science. Examples of these will be

provided along with tables and formulae, which

should prove to be of benefit to all eye-related

professionals in the conduct of their research.

Three main types of data will be considered,

namely continuous, binary, and ordered

categorical data. This paper will focus on

studies in which two independent groups

are to be compared. A second paper will

concentrate on more sophisticated trials

in which dependent groups are to be

compared.
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Materials and methods

Basic assumptions

It is assumed that researchers who are required to

perform a power calculation are familiar with the basic

measures of descriptive statistics such as mean (or

average), median (or middle value), and standard

deviation. The former two are used to summarise a set

of data and are often referred to as measures of central

tendency. The latter statistic provides an estimate of

how closely (or not) data are spread about the mean.

A combination of the two is frequently used to

characterise a set of data that follows a normal

distribution in which the mean and median

approximately coincide. In this case, a graphical

summary of the data is bell shaped. For such a

distribution, about 95% of data are contained within 1.96

standard deviations of the mean. In the comparison of a

set of means (each with standard deviation s, and based

on n values each), the variance between means is reduced

by a factor of n. The associated standard deviation, called

the standard error, is estimated by s/
ffiffiffi
n

p
. For a normal

distribution of means, B95% should be contained within

1.96 standard errors of the overall mean. The boundaries

of the relevant interval are called confidence limits or

critical values.

Our next assumption is that researchers are acquainted

with the basic notions of probability theory and, in

particular, that the probability, p, of an event outcome lies

between 0 and 1. There are many excellent texts on basic

statistical theory. For revision purposes and the use of

statistical software, Goodall6 provides an introduction

that focuses on applications in biomedical science

without straying too far into the underpinning

mathematical complexity.

Statistical significance

The concept of probability lies at the heart of statistical

significance tests. It may be worthwhile to delineate

the basic theory in which textbooks often use the

simple experiment of tossing a coin. Such a trial has

two possible outcomes, a head or a tail. If we tossed a

coin 10 times and obtained 10 heads, we might

ask ourselves whether the coin was really fair (that is, the

probability of obtaining a head was the same

as the probability of obtaining a tail and both were

equal to 0.5). We might now think after carrying

out our experiment that the coin was biased towards

heads and that the probability of obtaining a head was

higher than 0.5.

The above situation is similar to what happens in

the design and analysis of clinical trials in a variety of

applications in biomedicine. We have a hypothesis

that we wish to test, for example, is one drug treatment

really more effective than another? A hypothesis

called the null hypothesis (often abbreviated to H0)

is set up that there is no difference. We then proceed to

test this hypothesis by conducting an experiment to

assess the impact of the drug on two sets of patients.

If there is a major difference between the average

results for each set, we would suspect that the null

hypothesis is incorrect and that the alternative

hypothesis, (HA, one drug is superior) is true.

However, it is often difficult to know where to

draw the line in making a decision. This is where

probability theory is important. In the coin tossing

experiment, the probability of obtaining the observed

result is (1/2)10
y(1/1024) that is, o0.001 if the null

hypothesis is true (Po0.001). In this case, we would tend

to favour the alternative hypothesis because the observed

result was so unusual and unlikely. A scientist would

now say that the results are very highly significant and

reject the null hypothesis. A convention has grown up

that if Po0.05, the results are said to be significant. With

Po0.01, the results are said to be highly significant.

Many favour the strategy of simply stating the

probability of obtaining the experimental results found

and allowing readers of their report to make up their

own minds.

Summary

The null hypothesis (H0) is that which we are happy to

accept in the absence of any definite evidence to the

contrary. It should say something precise about the

population. Typically, it might say that the population is

as it is claimed to be, or that the population has not

changed.

The alternative hypothesis (HA) is that for which we

are seeking evidence. We shall accept it only if the

evidence is reasonably conclusive.

We devise some rule so that, on the basis of the

evidence available, we can make a decision either to

accept H0 or to reject H0. We might make the correct

decision (to accept H0 when it is actually true, or to reject

H0 when it is actually false) but there are two possible

types of error.

To reject H0 when it is actually true.

This is called Type 1 error.

The probability of making this error is often denoted

by a, and is called the significance level of the test.

To accept H0 when it is actually false.

This is called Type 2 error.

The probability of making this error is often

denoted by b.

The power of the test is (1�b) that is, the probability of

rejecting H0 when it is false.

Estimation of sample size requirements
EA Goodall et al

1590

Eye



The tests that we shall consider are designed so as to

have a given level of significance (Po0.05). Power should

be at least 80%, preferably 90%. It is closely connected to

the sample size of an experiment or survey.

If H0 is rejected, this is a positive result. We can be

reasonably confident that the alternative hypothesis HA

is true.

If H0 is accepted, this does not mean that we are

confident that H0 is true. It simply means that the null

hypothesis H0 is plausible in the light of the evidence

available, and cannot confidently be rejected.

Clinically important difference

A subject of confusion to some researchers is the

definition of an outcome difference that is considered to

be of practical importance. This is often confused with a

statistically significant difference. However, the two are

quite different. In fact, the most important consideration

in the estimation of sample size is a realistic assessment

of the minimum level of difference between two groups

that it would be worthwhile to detect. Researchers

should spend some time thinking about this at the

beginning of their work as it can have a dramatic impact

on the sample size numbers required. Well-designed

research work should result in the detection of an

important difference (assuming it actually exists)

between groups that is also statistically significant

that is, it incorporated a large enough sample size to

be reasonably certain that the difference is not purely

due to chance.

Tests for statistical significance

A number of standard tests have been developed to

assess statistical significance between two groups of data.

These are based on the theory discussed earlier. The tests

vary depending on the type of data under investigation.

They may be summarized as follows:(1) continuous, (2)

binary, and (3) ordered categorical. It may be useful to

review the main ones in current use.

t-test

In a two-group comparative study in which the

outcome measure is a continuous variable that is

approximately normally distributed (for example,

blood pressure or reduction in level of astigmatism),

the two sample t-test is the usual test of choice for the

analysis of results. The appropriate test statistic is

calculated as follows

t ¼ ð�X1 � �X2Þ

s
ffiffi
2
n

q ð1Þ

The numerator estimates the true difference between the

means of the two groups under investigation and the

denominator is its standard error. The number in each

group is n and s is obtained by taking the square root of

the average of the two sample standard deviations

squared. This formula assumes that there are equal

sample numbers in each group. If there are not, then the

term (2/n) is replaced by ((1/n1)þ (1/n2)), where n1 is the

number in the first group and n2 is the number in the

second group. This situation sometimes pertains because

of dropouts from a trial. The standard deviations are also

appropriately weighted. However, to achieve fairness

and balance, researchers usually aim to have equal

numbers in each group before a trial commences.

Cambridge Statistical Tables7 provide critical values

(at 5% (Po0.05), 1% (Po0.01), and 0.1% (Po0.001)

levels of significance) to assess whether t is statistically

significant. Estimates of t that are larger in magnitude

than the critical values indicate statistical significance

(that is, the difference between the means was unlikely

to have arisen by chance). Note that, with a very large

value of n, statistical significance can be achieved for

a difference in means of no clinical importance.

Standard statistical packages such as SPSS (Chicago,

IL, USA), Minitab (PA, USA), SAS (NC, USA) and STATA

(TX, USA) will also produce the P-value for assessment.

As discussed earlier, if the difference between means is

also considered to be clinically meaningful, a researcher

may have discovered something of interest for further

investigation. Throughout this paper, it will be assumed

that differences between means could arise in either

direction and that the tests are two sided.

Binomial test and Chi-square (w2) test
A variable that can only take two values is referred to as

binary. For example, an eye treatment may result in

success or failure or a symptom of disease may be

present or absent. Variables such as these are said to

follow a binomial distribution rather than a normal

distribution. In the comparison of the two different eye

treatments, the proportion of successes, (p), in each group

is calculated and the two proportions compared using

a binomial test. The philosophy is the same as in the

earlier section with the test statistic calculated as follows

z ¼ ðpA � pBÞ

s
ffiffi
2
n

q ð2Þ

The numerator estimates the true difference between

the two proportions and the denominator is its standard

error. The latter may be estimated by calculating

the average of the two proportions, p, and letting

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
(Appendix 1). (Cambridge Statistical

Tables7 again provide the relevant critical value). The
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assessment of whether the difference between the two

proportions arose by chance (or not) is also frequently

performed using a Chi-square (w2) test that provides

approximately the same P-value to reach a decision on

statistical significance. Computer packages such as SPSS

and Minitab also produce the correct P-value. Results are

often expressed as odds ratios (OR). These are calculated

by computing the odds of success for each of the two

groups that is, the proportion of successes is divided by

the proportion of failures. The smaller odds is then

usually divided into the larger one, enabling a researcher

to make a statement such as ‘the odds of success for one

eye treatment was three times that of the other’. This

approach proves to be particularly useful when more

than two proportions are to be compared simultaneously,

for example, three levels of application of a drug

treatment. In these trials, the logarithm of OR turns out to

be more mathematically tractable. This statistic is

frequently used in observational studies in which

a risk factor is under investigation in a case–control

study. A classic case is the linkage of smoking to lung

cancer.

Mann–Whitney U-test

Many research studies result in an outcome measure

that is defined on an ordered categorical scale. For

example, a patient’s subjective response to whether a

surgical eye treatment was successful (or not) might be

assessed using a Likert scale (strongly agree (1), agree (2),

disagree (3), and strongly disagree (4)). In this

situation, where two groups are to be compared, the

usual test of choice is the Mann–Whitney U-test with

allowance made for ties.8 This is a distribution-free test

that compares the sums of ranks and usually attempts to

answer the question ‘Are the medians of the two groups

statistically significantly different?’ (see Appendix 2 for

more detail).

Power analyses

Suppose that we have a two-group comparative study in

which the response is measured on a continuous scale.

Further, we wish the sample size in each group to be

sufficiently large to be 90% certain (power¼ 0.90) that a

clinically important difference, d, will be detected at the

5% (Po0.05) level of significance. The appropriate test

statistic is given by equation (1). Assuming a normal

distribution, t needs to be at least 1.96 to achieve

significance. The least difference between the two means

(LSD) that will be statistically significant is given by

rewriting equation (1) as

LSD ¼ 1:96�s

ffiffiffi
2

n

r
ð3Þ

However, to be 90% certain of detecting a difference, d

(that is, the clinically important difference defined

earlier), we must also satisfy a second equation

LSD � d

s
ffiffi
2
n

q ¼ �1:28 ð4Þ

The value 1.28 is the critical point corresponding to the

ninetieth percentile of a normal distribution. Rewriting

equation (4) we have

LSD ¼ d� 1:28s

ffiffiffi
2

n

r
ð5Þ

Equating the right-hand sides of (3) and (5), then solving

for n, we obtain

n ¼ 2ð1:96 þ 1:28Þ2s2

d2

¼:: 21
s

d

� �2
ð6Þ

For 80% power, the 1.28 value reduces to 0.84, the

eightieth percentile of a normal distribution, and

n¼:: 16
s

d

� �2

ð7Þ

We can see that the lower power leads to a reduced

sample size requirement. Also note that, for 90% power,

if s¼ d then we need 21 samples in each group. However,

if the standard deviation, s, is twice the clinically

important difference, d, then the sample size for each

group increases dramatically to 84. For 80% power, the

corresponding numbers required in each group are 16

and 64. Before a trial commences, s may be estimated

from an earlier pilot study or from the research literature.

For binary data, where two proportions, pA and pB, are

to be compared, first calculate p¼ (pAþ pB)/2. If this

value is not too small (greater than 0.10 say), estimate s

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
as in Section 2 and insert it into (6) and (7)

to estimate the approximate sample sizes required in

each group. Recall also that the clinically important

difference, d, is defined by the researcher before the trial

begins. For binary data, the numbers required are usually

much higher than for continuous data. For example, if

pA¼ 0.5 and d¼ 0.1, p may be computed to be 0.55 and

thus s¼ 0.50.

For 90% power,

n ¼21
0:5

0:1

� �2

¼525 in each group

For 80% power, n¼ 400. These are slight overestimates as

we are making assumptions that underlying normal

distributions exist. If we wish to be more exact, correction
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factors can be applied in both the continuous and binary

cases. Tables 1 and 2 provide corrected values. The

simple estimates provided above do not differ too

radically from the latter and various scenarios can be

investigated using only a calculator.

When the outcome or response variable from a trial is

measured on an ordered categorical scale (for example, 1,

2, 3, 4, and 5), the power calculation for the appropriate

Mann–Whitney U-test is not as straightforward as in the

earlier two sections. However, by making a number of

reasonable assumptions, we can arrive at a good

approximation of the sample sizes required in each

independent group.

The mathematics involved uses the concept of the OR to

estimate the clinically meaningful difference, which the

researcher thinks it is important to detect. As a guideline,

if an eye treatment usually results in 40% success and

researchers wish to use a new treatment in which a 30%

superiority of 70% is claimed, they seek an OR of

0:7
0:3

	 

0:4
0:6

	 

" #

¼ 3:50

For one of the groups, the proportion of cases expected in

each category of the scale has also to be specified. If we

consider the earlier example with five categories, it is

usually reasonable to assume that the mean proportions in

each category are approximately equal and that the

clinically meaningful difference, d, will be consistent. If we

have two groups called A and B, then denote the

proportions expected in group A by pA1, pA2, pA3, pA4,

and pA5 with similar nomenclature for group B. If we

denote the cumulative probabilities by CA1, CA2, CA3,

CA4, and CA5, then CA1¼ pA1, CA2¼ (pA1þ pA2), and

so on. The OR is the probability of a patient being in a

given category or lower in one group compared with the

other. For category 1, it is estimated by

OR1 ¼
CA1

1�CA1ð Þ

� �h i
CB1

1�CB1

	 
� �
OR2, OR3, and OR4 can be similarly calculated. The

assumption that these ORs are all approximately equal

justifies the use of the Mann–Whitney U-test as the best

one to use. The combination of this assumption with the

earlier assumption that the mean proportions in each

group are roughly equal leads to a formula for the

numbers required in each group.

For 90% power, this is given by

n ¼ 6 1:96 þ 1:28½ 	2

loge OR
� �2

For 80% power, the 1.28 reduces to 0.84. As usual, we

have assumed a 5% level of statistical significance. If we

assume an OR of 2, then loge2.0¼ 0.693. For 90% power,

we require ((6� 10.5)/(0.693)2)¼ 131 in each group. For

80% power, 98 in each group are required.

The above estimate of the number, n, required in each

group is approximate. A correction factor should be

applied where the number of categories is small. The

estimated n should be multiplied by (1�(1/k2))�1, where

k is the number of categories. It is not really necessary

when k is greater than five. For k¼ 2, 3, 4, and 5, it is

easily shown that the correction factors are 1.333, 1.125,

1.067, and 1.042, respectively. Whitehead4 has shown that

there is only a relatively small increase in power to be

obtained by increasing the number of categories beyond

Table 1 Sample sizes required per group at the two-sided 5%
significance level for different values of (s/d) and power

(s/d) Power (1�b)

95 90 80 50

2.50 164 133 100 49
2.00 105 86 64 32
1.50 70 48 36 18
1.25 42 34 26 13
1.00 27 22 17 9
0.50 9 6 5 4

Table 2 Sample sizes to detect a difference in two proportions, pA and pB, at a 5% significance level with 80% power

pB

pA 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.10 686 199 100 62 43 32 25 20 16 14 11 10 8 7 6 5
0.15 906 250 121 73 49 36 27 22 17 14 12 10 8 7 6
0.20 1094 294 138 82 54 39 29 23 18 15 12 10 8 7
0.25 1251 329 152 89 58 41 31 24 19 15 12 10 8
0.30 1377 356 163 93 61 42 31 24 19 15 12 10
0.35 1471 376 170 96 62 43 31 24 18 14 11
0.40 1534 388 173 97 62 42 31 23 17 14
0.45 1565 392 173 96 61 41 29 22 16
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five. Thus, any saving in the number of patients to be

recruited is minimal. Table 3 provides the numbers

required for different powers and ORs when the number

of categories chosen is five.

A special case of the ordered categorical data scenario

is when the number of categories is equal to two. The

situation here is much the same as for binary data

analysis. Suppose, for example, that researchers wish to

show that a new eye treatment increases success rates

from 40 to 60%, corresponding to an OR of 2.24. For 80%

power and 5% significance, the numbers required in each

group, using the computation of this section, is given by

n ¼ ð1:333Þ�ð47Þ
0:65

¼ 96

This number is approximately the same as if the analysis

had been performed using the binomial test for

comparing two proportions.

Results and examples

Continuous data

In a paper by Wong et al,9 the authors evaluated the

difference in the duration and power of

phacoemulsification required between the in situ fracture

variation of divide and conquer (DC) nucleofractis as

described by Shepherd10 and the phaco chop (PC)

technique, a variation of divide and conquer

nucleofractis in which nuclei are divided into fragments

with a phaco chopper instrument without the use of

central sculpting, as described by Koch.11 They found

that PC required significantly less (Po0.001) phaco time

in minutes (mean¼ 1.2, standard deviation¼ 0.79, n¼ 62)

than DC (mean¼ 2.4, standard deviation¼ 0.74, n¼ 55).

Other researchers wish to investigate whether they can

identify comparable improved outcomes and, in the

preparation of their Research Proposal, are asked to

perform a power calculation to assess the sample

numbers required in each experimental group. They are

also asked what they wish to achieve and they state that a

clinically meaningful difference between the means of

the two outcome groups is 0.5 min. A standard deviation,

s, for the computation is taken from the earlier study as

0.75, from the square root of the weighted averages of the

two reported sample standard deviations. Assuming

continuous data that are approximately normally

distributed, it is envisaged that the t-test will be used to

assess the results. The sample size (n) required for each

group can be estimated from the relevant method

delineated earlier. Thus, for 80% power and 5%

significance,

n ¼ 16�ð0:75Þ2

ð0:50Þ2
¼ 36

For 90% power, n¼ 47. It is also prudent to allow for

‘dropouts’ after initial recruitment of patients. This level

may be taken as around 10–15%. Allowing for the latter

and 80% power, the researchers need to seek a total

recruitment size of 84 patients. The (d/s) value, in this

case ((0.5/0.75)¼ 0.67), is usually referred to as the

standardised difference. Some Ethics Committees and

Research Grant fund holders may wish to see several

scenarios presented, that is, varying standardised

difference ratios with a range of clinically meaningful

differences, d, being defined.

Binary data

Our next example will use a paper by Sullivan et al.12

The purpose of the research was to evaluate the

imaging characteristics of a cohort of patients with

ocular adnexal lymphoproliferative disease (OALD).

One of the major results reported was that positron

emission tomography (PET) upstaged 71% of patients

with systemic lymphoproliferative involvement, having

a higher sensitivity than computed tomography (CT)

in detecting distant disease (86 vs 72%). In statistical

studies, sensitivity is defined as the proportion of true

positives correctly identified by a clinical test or

procedure.

Many studies require the comparison of two

sensitivities, such as the one quoted above, in which the

outcomes are essentially binary in nature. Suppose that

other researchers want to conduct a similar type of trial,

perhaps with an enhancement of the earlier procedures

used, and proceed to define a clinically meaningful

difference between the two relevant proportions as being

of the order of 20%. The null hypothesis is stated that

both procedures yield sensitivities of 70% and the

alternative hypothesis is that there is a 20% difference

between the two. They are allowing for the possibility

that the difference could be in either direction

(for example, two-sided) but really expect the newer

Table 3 Numbers required in each group of ordered categorical
data (for five categories) and for varying odds ratios and powers

Odds ratio Power

50 80 90 95

1.5 146 299 400 494
2 50 102 137 169
3 20 41 54 67
4 13 26 34 43
5 9 19 25 31
10 5 9 12 15
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procedure to be superior to a standard one. As before, a

Research Ethics Committee demands a power calculation

before approving the research. The actual test of choice

here should be a variation on the w2 test called

McNemar’s test,13 as it is planned to assess two

procedures on the same set of patients. This involves the

analysis of correlated data and will be dealt with in a

future paper. For the purposes of this example, it will be

assumed that we wish to compare a proportion of 0.7

with one that may be 0.2 better (or worse) using a

straightforward test of proportions or w2 test. In this

case, d¼ 0.20 and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
where p can be taken

as about 0.8 (that is, p¼ (0.7þ 0.9)/2) and thus s¼ 0.40.

For a power of 80%, the sample size required for each

group is estimated by

n ¼ 16
ð0:4Þ2

ð0:2Þ2
¼ 64

For 90% power, n¼ 84. Allow for ‘dropouts’ as before

and the researchers should satisfy an Ethics Committee.

If the difference between two procedures is suspected

to be in the other direction (for example, 0.7 vs 0.5), the

sample size for each group will need to be considerably

higher as p will now equal 0.60 and s will be 0.49. For a

power of 80%, the sample size for each group is then

given by

n ¼ 16
ð0:49Þ2

ð0:2Þ2
¼ 96

Another example is provided by the Macular

Photocoagulation Study.14 In research work on age-

related macular degeneration, 0.58 (98/169) of an

untreated group and 0.49 (86/174) of a group treated

with krypton photocoagulation had lost six or more lines

of visual acuity in the study eye after 3 years of follow-

up. If the original objective was to detect a difference of

0.10 in the two groups, with the null hypothesis that

there was no difference (that is, both about 0.60), then for

the earlier power calculation, p¼ 0.55 and s¼ 0.50. For a

power of 80%, the sample size required for each group is

estimated by

n ¼ 16
ð0:5Þ2

ð0:10Þ2
¼ 400

Ordered categorical data

A research paper by McMonnies15 delineates the use of a

detailed questionnaire to elucidate the diagnosis and

level of severity in patients with presenting signs of ‘dry

eye’. This approach results in a patient being scored on

an ordered categorical scale of 1–25. Suppose that a

researcher wishes to initiate a study in which the scale

scores will be compressed into four categories indicating

the relative severity of the condition with a four

corresponding to very severe, three to severe, two to

moderate, and one to mild. The researcher wishes to use

this scale to assess the claim of a pharmaceutical

company that their new eye ointment produces

improvements in treatment that are twice as good as

those of a competitor. From earlier analysis of

retrospective results, this claim is interpreted as meaning

that the proportion of patients still recording a very

severe condition after treatment will be 0.5 in one group

and 0.25 in the group using the new eye ointment,

equating to an expected OR in the latter’s favour of about

three. This assumption is extrapolated across the

categories as defined earlier in our consideration of

ordered categorical data. As usual, an Ethics Committee

is requested to consider a Research Proposal including a

power calculation to estimate the sample size required in

each eye treatment group. For 80% power, this can be

estimated from

n ¼ 47

ðloge ORÞ2

¼ 47

ðloge 3Þ2

¼ 47

ð1:207Þ ¼
:
: 39

Multiplying by the correction factor, 1.067, for four

categories, this yields a sample size of 42 per group.

The Mann–Whitney U-test is often used on data that

are not ordered on a categorical scale (as before), but an

initial analysis of continuous data has shown a

significant deviation from normality. An example might

be data measurements of visual acuity, which, even on

the logMAR scale, may not satisfy normality

assumptions. For the purposes of power calculations, it

could be considered as approximately categorical in

nature for example, categories correspond to best

corrected visual acuities of 0–0.3, 40.3–0.6, and so on.

This approach is often taken when different types of lens

are to be compared with the objective of showing that a

newer type leads to significantly better improvements in

eyesight. Note, however, that this strategy may lead to

greater sample sizes being demanded. In general, a

Mann–Whitney U-test is less powerful than a t-test,

except perhaps in cases where outliers in the data exist.

The former test is less sensitive to the existence of these

as medians, rather than means, are being investigated.

Discussion

Awareness of the need for power calculations to estimate

sample sizes has become more widespread in recent
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years. Their requirement has been increasingly

demanded by the Ethics Committees of Hospitals,

Universities, and by those committees formally

established by regional and national government

action. Research Grant fund holders also inevitably

necessitate the production of a power analysis to

justify expenditure on valuable recurrent and capital

resources.

Although it is advisable to consult a statistician

at the onset of planning of a clinical or epidemiological

trial, many organisations have limited access to such

a service as it is often shared by a large number of

medical research staff across a wide band of disciplines.

Thus, the routine availability of advice may be

constricted. When collaboration is instigated, it helps if

both sides can speak the language of the other. It is

therefore useful if researchers have an acquaintance

with the nomenclature required for good statistical

design and analysis.

Power calculations require some knowledge of

the meaning of statistical significance level, probability,

and the concept of a clinically meaningful difference

or effect size. The three main types of numerical

scale used in quantitative research are continuous,

binary, and ordered categorical. The efficient

computation of sample size needed in a two-group

comparison trial is dominated by the correct choice

of scale and the relevant statistical test. In turn, the

choice of test leads to the most appropriate type of

power calculation.

It has been the authors’ experience that there has

been, in some areas of the vision sciences, minimal

contact and collaboration between statisticians and

researchers. This paper has attempted to bridge a gap

by conducting a review of the statistical theory required

for the computation of adequate sample sizes needed

for research trials. It is hoped that the paper will

provide guidelines and form the basis for fruitful advice

to those who are engaged in ophthalmologic research

but who, through no fault of their own, have had little

training in the use of statistical analysis. For the sake

of simplicity, the paper has concentrated on power

analyses for two group comparisons in which the

outcomes are assumed to be independent. A future

paper will concentrate on the more complex challenges

faced when groups of correlated data are to be

compared (for example, different tests on the same

set of patients).

Although the demand for power calculations

seems unnecessarily bureaucratic to some researchers,

it nevertheless presents an opportunity to think in

more depth about the design of a study, its aims and

objectives, and how the final statistical analysis will be

conducted. Many are surprised by the actual numbers

required for the efficient conduct of their research.

However, this challenge inevitably arises from

situations in which the standard deviation of a set

of data exceeds the clinical difference which it is

considered important to detect. Large effect sizes

combined with a comparatively low standard deviation

will, in turn, reduce the sample size required for

the research.
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Appendix 1

Binomial distribution

If a sterling coin is tossed, there are two outcomes, a head

(H) or a tail (T). If the coin is fair, the probability, p, of each is

(1/2)(¼ 0.5). If a coin is tossed 100 times (n¼ 100), on

average, we should obtain 50 heads. Mean¼ np¼
(100)2)¼ 50. In practice, we will not obtain exactly 50.

A variable X with a Binomial distribution is known to have

a variance of np(1�p). The standard deviation is thusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 � pÞ

p
. For the above example, the standard deviation

is five. For large n, the binomial may be approximated

by a normal distribution and we can make statements

such as 95% confidence limits for the mean are mean

ðnpÞ 
 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 � pÞ

p
. For the above example, the limits

would be approximately 40-60 [50±10]. If we obtained

values outside these limits, we would suspect that the coin

was not fair.

Suppose we are investigating the sensitivity of a test

that is, proportion p of test positives (X) from a sample

of n true positives

varianceðpÞ ¼variance
X

n

� �

¼ 1

n2
varianceðXÞ

¼ 1

n2
nðpÞð1 � pÞ

¼ pð1 � pÞ
n

Hence standard error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

n

r

Appendix 2

The Mann–Whitney U-test

This is a distribution-free ranking test that asks the

question ‘Are the medians of two sets of data the same?’

1. Suppose there are two samples, with values

x1; x2; x3; . . . ; xNx
and y1; y2; y3; . . . ; yNy

. Rank them in

order together. This gives a sequence such as

x y y x x y x

2. For each x value, count the number of y values that

come after it. Thus, in the above example, the first x

precedes three y values, the second one, the third one,

and the fourth none.

3. Form the total 3þ 1þ1þ 0 and call it Ux, the number

of times an x precedes a y. In the same way, find

UyFhere 3þ 3þ 1¼ 7. Check that

Ux þUy ¼ NxNy

Under the null hypothesis that the averages are the

same, one expects Ux¼Uy¼ (1/2)NxNy, as each x value

will on average have half the y sample behind it and

the other half in front. If the medians are significantly

different, say x is ahead of y, then the x values will

precede more than their fair share of y values, and

Ux will be greater than Uy. For small samples, the

significance is given by tables. For large samples, the

normal approximation can be used, with the mean of Ux

equal to (1/2)NxNy, and variance (1/12)NxNy(NxþNy).
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