
The potential of 
marrow stromal cells in 
stem cell therapy 

Most tissues tend to contain specialised cells 
that originate from a small subset of highly 
undifferentiated, self-renewing elements called 
'stem cells' that have the potential to persist 
throughout adulthood.1,2 Thus, during normal 
development these stem cells generate 
intermediate progenitor cells which are capable 
of proliferating and differentiating into multiple 
yet distinct cell lineages. Stem cells derived 
from immature embryos are capable of 
differentiating into all somatic cell types3,4 and 
those derived from adult tissues have been 
thought to produce only the cell lineages 
characteristic of the tissue of isolation.s 

The bone marrow is the primary site where 
self-renewal and differentiation of 
haematopoietic stem cells occurs.6,7 One 
subgroup of bone marrow stem cells, bone 
marrow stromal cells (MSCs), have been shown 
to possess greater multilinear potential than 
previously thought. MSCs have been shown to 
differentiate into osteogenic (bone), 
chondrogenic (cartilage) and adipogenic (fat) 
lineages in vitro.8--14 However, several recent 
studies12,lS-17 have observed that MSCs under 
strict experimental conditions can differentiate 
into various cell lineages, including muscle, glia 
and hepatocytes (Fig. 1). 

There appear to be several advantages in 
using MSCs as opposed to haematopoietic stem 
cells (HSCs) when considering either cell or 
gene therapy. First, it has been shown that 
MSCs are relatively easy to isolate and 
culture6,18,19 compared with HSCs which have 
been observed to be quite difficult to expand in 
culture.20--22 Second, only small volumes of MSC 
are extracted at harvesting,10,17,23 while larger 
volumes of marrow are needed in order to 
obtain adequate numbers of HSCsY 

Besides the bone marrow, stem cells can be 
successfully extracted from both animal and 
human fetal tissues?,4,24-27 Due to the ethical 
and moral dilemmas this poses, advancement of 
this avenue into cell therapy could be limited. 
This, in addition to the fact that MSCs are not 
restricted to producing specific cell types, 
namely those from the tissue in which they 
reside,28 emphasises the enormous potential of 
these cells in both cell and gene therapy. This 
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review focuses on the potential of bone
marrow-derived MSCs in such settings, with 
particular attention to their application in the 
eye. 

Bone marrow stromal cells (MSCs) 

Most if not all initial experiments with HSCs 
incorporated the techniques of either 
Friedenstein et al?9 or Dexter et al.6 Both 
methods result in a heterogeneous population 
of cells that include fibroblasts, fat cells, 
endothelial-like cells30-34 and smooth-muscle
like cells.35-37 These adherent cultures of 
stromal cells have the advantage of remaining 
undifferentiated and viable for extended 
periods for time.6,17 Despite this, the 
heterogeneous nature of the culture limits the 
application of this model due to the difficulty of 
interpreting the results. 

Due to these limitations, a number of 
subsequent studies incorporated magnetic 
separation techniques to yield 'purer' colonies 
of several stromal cell lineages.38,39 Other 
studies have utilised additional separation 
techniques including flow cytometry,40 relative 
uptake of acetylated low-density lipoprotein41 
and by the isolation of cellular aggregates.42 

A number of experiments have focused on 
the expression of immunological markers that 
define certain stromal cells in order to isolate a 
more homogeneous cell population. Work 
conducted by Perkins and co-workers43,44 
involved the isolation and purification (>95%) 
of MSCs using the MECA-lO antibody as a 
reagent for magnetic cell sorting. Similarly, 
other markers that have been utilised to 
specifically identify MSCs have included 
STRO-1, H513E.3, 6.19 and KM16, which 
identifies fibroblasts, adipocytes, erythroid and 
endothelial cells.18,4S-49 Other studies have 
focused on sorting MSCs via the isolation of 
specific protein-producing cellsso or via the 
production of cytokines.S1 All these methods 
have the additional advantage ov�r 
conventional MSC cultures that the subcloning 
of isolated cells typically results in the 
production of a homozygous cell population. 
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Fig. 1. Schematic diagram indicating the potential of MSCs in the production of non-haematopoietic tissues. Arrows highlighted with a question 
mark indicate potential applications only. 

Multilinear potential of MSCs 

A number of investigations have found that MSCs are 
capable of fully differentiating into numerous 
haematopoietic cell lineages. Initially, MSCs were 
thought to differentiate into a number of cell types 
including osteoblasts, chondroblasts and adipocytes, all 
of which are located in tissues immediately surrounding 
the bone marrow, but only recently has their 
differentiation into these specific cell types been 
elucidated in vitro. 

Osteoblasts are responsible for synthesising new bone 
matrix9,52 and their differentiation in vivo is thought to 
consist of a proliferation phase, a matrix maturation 
phase and a mineralisation phase.53 In vitro studies using 
rat and human MSCs have found that a number of agents 
including dexamethasone/8,54-58 L-ascorbic acid59 and 
�-glycerolphosphate60 are all essential in inducing MSCs 
to express an osteoblastic phenotype. Other studies have 
focused on the culture of cartilage cells from MSCs due 
to their potential treatment of conditions including 
degenerative arthritis. Initial studies induced 
chondroblast formation by culturing MSCs in micromass 
pellets in the presence of dexamethasone and 
transforming growth factor_�(3).61,62 Resulting cultures 
were shown to develop a multilayered rich morphology 
whose cells expressed markers typical of articular 
cartilage.14,61,62 Diduch and co-workers63 have also 
reported that a gellification agent, alginate, seems to 
induce chondrocyte formation in vitro, and when used as 
a carrier agent, aids in the repair of full-thickness 
osetochondral defects in vivo. 

Recent advances in MSC experimentation have 
enabled the culture of adipocytic cells in vitro. Work 
conducted by Pittenger and co-workers14 has shown that 
tripotent progenitor cells can be induced to differentiate 
into adipocytic cells by treatment with I-methyl-3-
isobutylxanthine, dexamethasone, insulin and 
indomethacin. Induction was visualised by the presence 
of lipid-rich vacuoles within cells. However, work 
conducted by Muraglia et al.64 has found that MSCs lose 
their adipocytic differentiation with increasing cell 
doubling. 

Potential of bone marrow stromal cells for non
haematopoietic tissues 

Neural cell regeneration 

Considerable interest in the isolation and expansion of 
neural progenitor cells exists due to their potential 
application in the treatment of central nervous system 
disorders. The majority of these studies have focused on 
the isolation of stem cells obtained from embryonic and 
adult animal brains.z,25,65-68 Results from these studies 
have shown that isolated stem cells could easily be 
differentiated into neurones and glia with the removal of 

mitogens and the addition of serum. Recent in vivo 
investigations have progressed further by successfully 
transplanting the differentiated stem cells into lesioned 
brains.z,27,69,7o Tumour development was absent in 
transplanted animals and immunohistochemical staining 
showed that transplanted differentiated stem cells had 
integrated extensively into the host tissue. 



Interestingly, a number of studies using neural stem 
cells have shown that stem cells in general are not 
restricted to producing the specific cell types found in 
their tissue of origin. Suhonen and co-workers71 
observed the differentiation of adult hippocampus
derived stem cells into olfactory neurones, and more 
recently Bjornson and colleagues28 showed that 
genetically labelled embryonic stem cells transplanted 
into hosts were progenitors to a number of blood cell 
types including myeloid and lymphoid cells. 

There have been only a few studies investigating the 
multipotential of MSCs for non-haematopoietic tissues. 
Kopen and co-workers4 were the first to investigate the 
theory that MSCs could adopt neural cell fates when 
exposed to the brain microenvironment. In this study bis
benzimide labelled cells were injected into the lateral 
ventricle of the brain of cryoanaesthetised 3-day-old 
mice. Twelve days after the transplant the mice were 
killed and their brains examined by 
immunohistochemical staining. Results showed that at 12 
days post-transplant, MSCs had migrated throughout the 
forebrain and cerebellum. No evidence of tumour 
development was observed. It was noticed that MSCs 
had migrated and integrated into neurone-rich regions 
including the Islands of Calleja, the olfactory bulb and 
the internal granular layer of the cerebellum. There was 
also evidence to suggest that some MSCs had 
differentiated into astrocytes and neurones.4 
Additionally, two more recent studies conducted by 
Sanchez-Ramos and colleagues17 and Woodbury et al.23 
investigated the multilinear potential of MSCs. In both 
studies human and mouse MSCs were successfully 
induced to differentiate into neurones under strict 
experimental conditions. 

Bone marrow and liver regeneration 

Oval cells are considered to be precursor cells that have 
the capacity to proliferate and differentiate into 
hepatocytes or bile duct cells when such cells are 
prevented from proliferating, usually in response to liver 
damage.72 Hepatic oval cells express particular 
haematopoietic surface markers, including CD34, Thy-I, 
and c-kit mRNAs/6,73,74 and previous work by Petersen 
and colleagues16 has shown that oval cells and other liver 
cells, such as hepatocytes, can originate from a cell 
population in or associated with the bone marrow. 

Bone marrow and brain development 

The brain is composed of two general cell types: 
neurones and glial cells. Glial cells play an important 
physiological role in that they assist in neuronal function 
and repair neuronal damage due to injury or disease. 
Glial cells are divided into two subgroups: (1) macroglia, 

derived from neuroectoderm/5 and (2) microglia, whose 
origin remains unclear. A number of studies have shown 
microglia to originate from neuroepithelial cells76,77 
whereas others argue that they originate from 
haematopoietic stem cells?8,79 Thus Eglitis and Mezey80 

conducted a study to investigate whether glia in disease
and injury-free adult brains originated solely from cells 
present in the brain from the fetal stages of development, 
or whether there was a migration of cells into the brain 
from outside the central nervous system (CNS). In situ 
hybridisation techniques were used to detect genetically 
tagged bone marrow cells in the brains of recipient mice. 
Results showed that marrow-derived microglia cells 
were detected in recipient brains 3 days after 
transplantation, and continued to be incorporated into 
the brain even up to 70 days after transplantation. so 
Immunohistochemical analysis also showed that the 
marrow-derived cells were widely distributed 
throughout the brain, and were detected in the cortex, 
hippocampus, thalamus, brain stem and cerebellum.8o 

Bone marrow and muscle regeneration 

Postnatal repair of muscle fibres is mediated by satellite 
cells which are located between the sarcolemma and the 
basal lamina of the muscle fibre, but whose functional 
capacity is limited by a slow replication rate81 and a 
decreasing capacity for self-renewal with age.82 
However, after injury, the numbers of satellite cells 
observed are much smaller than the number of 
committed myogenic precursors that populate the 
muscle fibre.83 Initial studies by Wakitani et al.84 found 
that MSCs were in fact capable of differentiating into 
contractile myotubes under strict experimental 
conditions in vitro. Subsequent transplantation studies 
conducted by Ferrari and colleagues85 showed that MSCs 
were indeed capable of migrating into degenerated sites 
and fully differentiating into muscle fibres that would 
then participate in the regeneration process. 

Breast tissue regeneration 

Immunohistochemical staining methods have identified 
subpopulations of cells in the mammary gland including 
terminal end buds (TEB), lateral buds (LB) and alveolar 
buds that are composed of a heterogeneous collection of 
cells including stem cells.86-88 Explant studies have 
shown that when defined segments of the mammary 
gland have been excised and transplanted, full 
regeneration of the mammary gland has resulted.89 Most 
of the current applications of stem cell technology in this 
field are directly involved as part of the 
chemotherapeutic regimen90-92 which is now being 
trialled clinically in breast cancer patients.93-98 No 
studies at present have targeted stem cells, including 
MSCs, for their potential role in the regeneration of lost 
or disfigured breast tissue: Partial mastectomies that 
usually result in breast tissue disfigurement could benefit 
particularly from MSC therapy, and this warrants further 
investigation. 

697 



698 

Keratinocyte tissue regeneration 

As in other tissues, stem cells found in the skin (termed 
holoclones) are the progenitor cells that give rise to fully 
differentiated cells in response to injury or stimulation,99 
and are thought to account for 1-10% of the epithelial 
basal cell population.lOO,lOl Subpopulations of the skin, 
like the dendritic epidermal cells, have been found to 
express specific surface markers such as Th-l which also 
are expressed by haematopoietic cells.102,103 Recently, 
Young and colleagues104 were able to differentiate MSCs 
into pure cultures of dendritic colony forming units 
in vitro. Since no other myeloid cell types were identified 
in derived dendritic colonies it was concluded these cells 
contribute to the epidermis and afferent lymph where 
dendritic cells are the principal myeloid cell type.104 Due 
to the complex nature of the skin and surrounding 
structures (e.g. hair follicles) very few studies have 
investigated the potential application of stem cells in this 
f· Id 104 105 F th ' t' . .  . d f Ie . '  ur er mves Igahon IS reqUIre to ully 
explore their potential role in wound healing, alopecia 
and skin disorders such as vitiligo. 

Retinal regeneration 

Retinal failure can be caused by a combination of factors 
such as exposure to intense light, aging, or genetic 
factors. Degeneration is often characterised by the 
progressive death of one or other subset of cells of the 
retina, such as photoreceptor cells. It has been 
demonstrated that retinal failure involves programmed 
cell death, i.e. apoptosis. In spite of the loss of one cell 
type, function may still exist in the remaining retina and 
the axons connecting the retina to the brain. Hence 
photoreceptor or retinal pigment epithelium (RPE) cell 
replacement may aid in the restoration of some degree of 
vision. 

Therapeutic strategies 

Retinal transplantation 

Despite the complexities associated with photoreceptor 
transplantations, several advantages of this therapeutic 
regimen make it a viable option. First, the retina does not 
appear to undergo glial scar formation when damaged, 
which may be due to the fact that retinal cells are capable 
of regrowing severed axons within the eye or due to their 
close proximity to their postsynaptic targets.106,107 
Second, the photoreceptor layer of the retina is non
vascularised, which limits most other neural tissues 
when considered for transplantation.108 Third, the lack of 
vascularisation reduces the risk of tissue rejection. This in 
addition to the fact that very little MHC class I and II 
expression is observed on photoreceptors, limits their 
vulnerability to transplant rejection.109 

Initial studies in animals involved the transplantation 
of full-thickness retinas which, although remaining 
ordered and viable, showed a limited ability to integrate 
with the host retina that was age-relatedyo-1l3 
Subsequent studies incorporated the use of retinal cell 

suspensions which reduced the complexities of the 
surgical procedure and trauma to the recipient.1l4,1l5 
Results from these and other studies showed that the cell 
suspensions usually formed differentiated rosette 
structures rather than well-organised layersy4-1l7 

One particular study, conducted by Silverman and 
Hughes,108 successfully transplanted sheets of 
photoreceptors from retina that had been gelatin
embedded and vibratome-sectioned. Results showed that 
transplanted sheets of photoreceptors remained viable 
for at least 6 weeks, and that the cells were capable of 
producing visual pigment and thus transduce light.108 
Additional studies since then confirmed this method of 
photoreceptor sheet transpiantationY8,1l9 Other studies 
in turn have focused on the transplantation of fetal cells 
into hosts. Ghosh and co-workers120 investigated the 
long-term effects of full-thickness embryonic retinal 
transplants in the rabbit. Embryonic neuroretina was 
harvested from 19-day-old fetal rabbits and transplanted 
into hosts which were then monitored for a period of 10 
months. Results showed that full-thickness embryonic 
retinal transplants were able to survive without 
immunosuppression for at least 10 months when 
positioned with correct polarity.12o Similar results were 
also obtained by Sharma and colleagues 121 and Aramant 
et al.,122 who successfully co-transplanted intact sheets of 

fetal retina with RPE in vivo. 
Recently, Woch and colleagues123 transplanted intact 

sheets of rat fetal retina with RPE into recipient animals 
suffering from photoreceptor degeneration. In particular, 
retinas with attached RPE from 14-day-old rat fetuses 
were excised, embedded in alginate and then 
transplanted into the subretinal space of recipient 
animals, which were then monitored over a period of 10 
months post-transplant. Results obtained showed that 
this transplantation technique restored visually evoked 
responses in 65% of recipient rats brains,123 although the 
underlying mechanism producing this effect was not 
known. 

Initial studies involving the transplantation of human 
fetal retinal tissue into rat hosts focused on the 
optimisation of transplant procedures as well as 
assessing graft host interaction.124-127 Results from these 
studies showed that the development of human retinal 
transplants appears to parallel normal in utero 
development. Transplanted cone, rod and Muller cells all 
expressed cell-specific proteins, contained essential 
proteins for processing light and developed to maturity 
comparable to their normal counterparts.124,125 In 
addition Little and co-workers128 successfully 
transplanted human fetal RPE into rats suffering from 
genetically inherited retinal degeneration. Results 
showed a dramatic rescue effect with the number of 
observed photoreceptor nuclei being significantly greater 
in transplanted hosts than in sham-injected controls.128 
Results obtained in this study showed for the first time 
that transplanted human fetal RPE was able to rescue 
photoreceptor cells in a model of hereditary retinal 
degeneration. 



With such promising results obtained in animal 
models, Kaplan et al.129 conducted a feasibility and safety 
study of photoreceptor transplantation in patients 
suffering from retinitis pigmentosa. Sheets of human 
photoreceptor cells were harvested from cadaveric eyes 
using the vibratome-section method mentioned 
earlier/OB and transplanted into the subretinal space of 
two patients with retinitis pigmentosa with a visual 
acuity of no light perception. Although 12 months later 
the visual acuity of no light perception remained in both 
patients, there appeared to be no signs of tissue rejection 
despite the patients not being immunosuppressed for 
this period.129 In addition, cystoid macular oedema, 
uveitis and macular pucker were not observed. 

Recently, Humayun and colleagues 130 conducted a 
human pilot study of human fetal retinal transplantation, 
with three specific aims: (1) to determine a safe surgical 
procedure for transplantation, (2) to observe whether 
transplanted tissue would be accepted into the subretinal 
space, (3) to see whether there was any improvement in 
vision-impaired recipients. Results showed that none of 
the recipients developed retinal vasculitis or intraocular 
inflammation after transplant and no rejection of the 
tissue was observed. Despite successful grafting 
procedures, only three patients demonstrated any 
improvement in light sensitivity in the initial months of 
follow-up. This appeared to be a transient effect as light 
sensitivity disappeared 3-13 months post
transplantation. 130 

Stem cell therapy of ocular disease 

Despite significant advances in the transplantation field, 
progress has been limited with regard to its lack of ability 
to significantly improve sight quality.129,130 Thus parallel 
studies have been conducted into the potential use of 
stem cells to treat retinal degeneration. Most tissues 
contain some stem cells that are capable of generating 
intermediate progenitors which then proliferate and 
differentiate into multiple yet distinct cell lineages.2 
Although found in tissues, the bone marrow remains the 
primary site where stem cells undergo self-renewal and 
differentiation. Stem cells can also be derived from 
immature embryos which are capable of differentiating 
into all somatic cell types4 and those derived from adult 
tissue.5,131 Stem cell therapy holds a particular advantage 
over transplantation methods since the procedure is 
autologous in nature. As a result it bypasses the 
limitations currently seen with transplantation methods, 
which include the risk of tissue rejection and the 
transmission of prion proteins. 

Since stem cells can be isolated from a number of 
different origins, there exists a number of obstacles that 
could limit the potential use of these cells as part of a 
therapeutic regimen for disease. Currently there are 
major ethical and religious issues in the use of stem cells 
derived from fetal tissue. Many countries, including 
Japan and Australia, have introduced legislation that 
currently prohibits or will prohibit the derivation and 
use of human embryonic stem cells, whereas other 

countries, including the United Kingdom, Germany and 
the United States, appear more receptive.132 Conversely, 
there appears a more positive consensus in the use of 
adult-derived stem cells for therapeutic use. Since in 
many disease settings stem cells cannot be isolated from 
the tissue of choice, alternative donor sites need to be 
investigated. Thus, bone-marrow-derived stem cells 
become a realistic and extremely viable option as the 
cells of choice. 

Limbal stem cells 

Stem cells are already being used in clinical practice for 
certain ocular surface diseases including pterygium. 
These stem cells are isolated from the limbal basal 
epithelium, which have been observed to contain the 
least differentiated cells of the corneal epithelium and 
have been commonly term limbal stem cells (LSCs). In 
addition there appears to be potential application of the 
use of LSCs in conditions when the stromal 
microenvironment is insufficient to support stem cell 
function, such as aniridia, or when stem cell deficiency 
occurs as a result of external factors that destroy the LSCs 
such as chemical or thermal injuries, ultraviolet and 
ionising radiation, Stevens-Johnson syndrome, advanced 
ocular cicatricial pemphigoid, multiple surgeries or 
excessive microbial infection.133-140 

LSC transplantation is the treatment method of choice 
when stem cell deficiency affects the whole corneal 
surface. The first human trials of limbal transplantation 
were conducted by Kenyon and Tseng141 who performed 
a limbal autograft transplantation to treat unilateral 
ocular surface disorders. In this particular study, both 
conjunctiva and limbus (including LSCs) were excised 
from the good eye and transplanted into the recipient 
eye.141 Studies since this initial investigation have 
reported several variations of this limbal 
transplantational method, with most observing good 
reconstitution of the corneal epithelium and regression of 
neovascularisation.13B,139,142-145 

Although in principle the techniques used in limbal 
transplantation are similar, the source for donor cells can 
vary. Donor tissue can be obtained from the good eye 
(limbal autografts) when used to treat cases of unilateral 
disease141,146-14B or can be obtained from a living related 
donor or cadaver (limbal allograft) when both eyes are 
affected.136,149,150 One major limitation to the use of 
limbal allografts has been the high immunogenic 
stimulus of the transplant itself that ultimately leads to 
allograft rejection.151-153 Thus, a number of studies have 
incorporated immunosuppressive agents with relative 
success/54-157 although there is the implication that long
term systemic immunosuppression is required. 

Retina-derived stem cells 

To date most studies that have investigated the potential 
of stem cells for the treatment of other ocular diseases 
have focused on the isolation of progenitor cells from the 
tissue of choice, in this case from both embryonic and 
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adult retina.26,158-162 Isolation has involved the excision 
of both the optic nerve and mesenchymal tissue to 
prevent contamination with brain tissue, the separation 
of the retina from the RPE and the removal of the central 
portion of the retina connected to the optic 
nerve.131,158,161,162 Retinal cells are then dissociated into 
single cell suspensions and cultured under standard 
aseptic conditions. The retinal stem cells have then been 
successfully differentiated into ganglion cells/63 
amacrine cells/62,163-165 bipolar cells163 and both rod and 
cone photoreceptors.26,158-160,166-170 

Studies since have focused on the successful 
transplantation of these stem cells into both normal and 
diseased retinas to observe and determine stem cell fate. 
Chacko and colleaguesl71 investigated the survival and 
differentiation of cultured retinal progenitor cells upon 
subretinal transplantation. When transplanted either as 
neural spheres or as a cell suspension, it was observed 
that the progenitor cells survived without disrupting the 
host retina morphology. In addition, transplanted retinal 
stem cells were found to express photoreceptor-specific 
markers, which suggests that these progenitor cells have 
the potential to differentiate into photoreceptors. 

Work conducted by Kurimoto and co-workersl72 
further investigated the successful transplantation of 
retinal stem cells in vivo using a retinal degeneration 
model. Results showed that when injected into normal 
retina, the stem cells integrated both with the outer 
nuclear layer of the host retina as well as into the inner 
retinal layers. Those that had integrated with the outer 
retinal layers were found to express recoverin, a marker 
for photoreceptors and cone bipolar cells, whereas those 
that migrated into the inner layers of the retina did not 
express recoverin.174 When assessed in the retinal 
degeneration model, it was observed that the progenitor 
cells had migrated and integrated with the host retina, 
but in this setting were also able to express rhodopsin (a 
photoreceptor specific marker) as well as recoverin.l72 It 
was concluded from this study that retinal progenitor 
cells might be able to respond to cues in the local 
microenvironment that induce the appropriate 
differentiation of transplanted cells. 

Inducers of photoreceptor differentiation 

Inducing agents 

In a number of the different studies, particular agents 
have been identified to induce partial stem cell 
differentiation into photoreceptor cells.26,160,161,173,174 
Work conducted by Altschuler and co-workers161 
characterised retinal-ceIl-conditioned medium (CM) and 
extracts as sources of factors that influence photoreceptor 
development. Of 30 compounds pharmacologically 
screened, only taurine, which is found in high levels in 
the retina and central nervous system, and two similarly 
structured compounds were found to induce 
photoreceptor development. An additional study by 
Kelley and colleagues160 further examined the effect of 
retinoic acid on fetal retinal cultures in vitro as a result of 
previous work that found it to be present in the 

developing retina.175 Results obtained in this study 
found that exogenous retinoic acid caused a dose
dependent, specific increase in the number of cells that 
differentiated into photoreceptors, as well as a dose
dependent increase in the number of cells that developed 
into amacrine cells.160 

Initial developmental studies found that retinal cells 
express the high-affinity neurotrophin-3 (NT -3) 
receptors.176 In two subsequent investigations/73,177 
NT -3 was also assessed for its effect on photoreceptor 
development both in vitro and in vivo. Results from both 
investigations found that NT-3 promoted the 
differentiation of embryonic chick retinal cultures, and 
was an essential intrinsic signal acting in early 
development in vivo to promote the differentiation and 
survival of many retinal neurons.173,177 

A recent study conducted by Davis et al?6 examined 
the effect of activin A on fetal rat retinal cultures, since a 

previous investigation reported its expression in the 
developing retina.178 In vitro results showed that 
exposure of retinal cultures to activin A caused the 
progenitor cells to exit the cell cycle and differentiate into 
rod photoreceptors. This effect was observed to be dose
dependent and specific since other retinal neurons 
generated (e.g. amacrine cells) were not affected by 
activin A treatment. In vivo results also showed that mice 
with the homozygous deletion of the activin J3A gene 
exhibit a specific decrease in the number of rod 
photoreceptors compared with their heterozygous or 
wild-type counterparts.26 

In addition, other studies have found that the addition 
of certain growth factors, including transforming growth 
factor (TGFa), fibroblast growth factor (FGF) and 
epidermal growth factor (EGF), aid in the proliferation of 
retinal stem cells.163,164 Although these agents have been 
found to increase the rate of photoreceptor induction, 
they have not been found to induce complete 
differentiation of all stem cells in culture.26,159 Thus the 
heterogeneous nature of such cultures limits their 
application due to the difficulty of result interpretation. 

Specific gene inducers 

Members of the hedgehog family of proteins have 
been associated in the patterning of multiple tissues 
during embryogenesis, including the neural tube, limbs, 
bone and sex organs.179 Studies on the Drosophila eye 
have observed that the hedgehog gene family, which 
encodes for secreted proteins, is involved in controlling 
the timing and rate of photoreceptor differentiation 
during development.174,180,181 Further investigation 
conducted by Dominguez and Hafen182 showed that 
secretion of hedgehog proteins from cells at the posterior 
disc margin was an absolute requirement for the 
differentiation of ommatidial precursor cells into 
photoreceptors. 

In a recent stUdy, Levine and co-workers170 
successfully cloned several members of the hedgehog 
family including rat Sonic hedgehog (Shh), Desert hedgehog 
(Dhh) and Indian hedgehog (Ihh) from fetal rat retina and 



adult rat RPE. Fetal retinal cultures were then incubated 
with a specifically produced N-terminal Recombinant 
Sonic Hedgehog protein (SHH-N) for a period of 3-12 days, 
and resulting cell phenotypes then assessed using 
immunohistochemical techniques. It was shown that 
exposure of retinal progenitor cells to SHH-N resulted in 
a 2- to lO-fold increase in the number of cells that 
differentiated into photoreceptors, whereas there was no 
change in the number of differentiated retinal ganglion 
cells or amacrine cells. Subsequent studies have since 
found that Ihh also promotes neuronal differentiation of 
murine spinal cord precursors.183 

The paired-liked homeodomain transcription factor 
CRX (cone-rod homeobox) has been implicated in 
photoreceptor gene expression and rod outer segment 
development.184-186 This transcription factor belongs to 
the OTD/OTX homeobox gene family, and its expression is 
restricted to developing and adult retinal photoreceptors 
and cells within the pineal gland.184,185,187 In vitro studies 
have found that it specifically binds to regulatory 
elements in the promoters of several photoreceptor
specific genes such as rhodopsin and in transient 
transfection assays found to transactivate these 
genes.184,185,187 In vivo studies using a CRX knockout 
mouse model188 have also shown CRX to be essential for 
retinal development. Furthermore, mutations in the CRX 
gene have been associated with several retinal diseases, 
including autosomal dominant cone-rod 
dystrophy}87,189,190 retinitis pigmentosa192 and Leber 
congenital amaurosis (LCA).191-193 

With the advancement of successful stem cell 
isolation, recent work conducted by Haruta and 
colleagues194 investigated the effect of this gene on stem 
cell differentiation. Retinal stem cell from 3- to 4-week
old rats were isolated and cultured with basic fibroblast 
growth factor (bFGF) and infected with replication
deficient adenovirus encoding CRX. Using 
immunohistochemical techniques, results showed that 
adenovirus-mediated gene transfer of CRX notably 
promoted retinal stem cell differentiation into 
photoreceptors.194 

Potential application for MSC application for ocular 

disease 

To date no studies have investigated the potential of 
MSCs as a source of photoreceptor progenitor cells 
in vitro or in vivo. These cells have been shown to possess 
great multilinear potential, differentiating into 
osteogenic, chondrogenic, adipogenic, hepatic, glial and 
muscle cell lineages.8,lO-12,15-17 MSCs hold additional 
advantages over current methods in that the isolation 
procedure is less labour-intensive, only small volumes 
are required at harvesting, and the cells are easy to 
culture under standard co�ditions. The fact that there are 
significant ethical and moral issues with using human 
fetal tissue further emphasises the enormous potential of 
these cells in both cell and gene therapy. 

Although there exists enormous potential in using 
MSCs in the formation of non-haematopoietic cell types, 
there are currently a number of obstacles, including the 
heterogeneity of differentiated stem cell populations, that 
could limit its practical application. As a result 
alternative avenues by which to derive specifically 
desired cell lineages, such as photoreceptor using MSCs, 
are currently being explored. 

Stem cell plasticity 

Marrow stromal cells 

One such avenue is the specific induction of retinal 
photoreceptors from progenitor cells isolated from sites 
other than the optical retina and bone marrow, such as 
the brain. Initial studies by Kopen and co-workers4 
showed that murine MSCs were able to be engrafted into 
neonatal brain, and were shown to differentiate into 
astrocytes and neurones. A subsequent investigation by 
Woodbury and colleagues23 showed that both rodent 
and human MSCs were capable of differentiating into 
neurones in vitro, when exposed to a specifically 
formulated neuronal induction medium. Resulting 
differentiated MSCs were shown to exhibit a neuronal 
phenotype, expressing neurone-specific enolase (NSE), 
HeuN, neurofilament-M (NF-M) and tau?3 In a similar 
study Sanchez-Ramos and co-workers17 also successfully 
differentiated murine and human MSCs into neural cells 
in vitro by using a specifically derived induction 
medium. Resulting cells were found to express the 
protein and mRNA for the neural cell markers: nestin, 
glial fibrillary protein (GFAP) and neurone-specific 
nuclear protein (NeuN). 

Neural stem cells 

Takahashi and co-workers195 were the first to observe 
that neural progenitor cells isolated from adult rat 
hippocampus exhibit vast plasticity when grafted into 
the optic retina. Results indicated that the progenitor 
cells formed a non-disruptive lamina layer, and at 4 

weeks post-grafting exhibited the morphologies of and 
positions of Muller, amacrine, bipolar, horizontal, 
photoreceptor and astroglial cells.195 Despite this, results 
also showed that although still expressing neuronal or 
glial markers, none of the progenitors cells acquired end
stage markers uniquely found in retinal cells. Since 
neural cells have been successfully engrafted into the 
optic retina but appear not to disrupt its complex 
architecture, as well as partially differentiating into 
photoreceptor cells, these progenitor cells in particular 
may hold potential as a progenitor pool source for retinal 
cells. 

Additional studies since have further explored this 
possibility by examining neural stem cell fate when 
transplanted into particular retinal degenerational 
models. Work by Lauritzen and colleagues196 
determined whether retinal degenerational mice 
(S334ter) were suitable recipients for adult rat 
hippocampal progenitor cell transplantation. In this 
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study, the neural stem cells were transplanted into the 
intravitreal space of recipient mice and assessed over a 4 

week post-transplantational period. Results showed that 
there was no evidence of endophthalmitis or 
inflammation as a result of the transplantational 
procedure and that grafted cells integrated with host 
retinas. In particular it was observed that there was a 
greater level of neural stem cell integration in S334ter 

mice than in control animals.l96 
Young et al?97 conducted a similar study whereby 

adult rat hippocampal progenitor cells were isolated and 
cultured from Fischer 344 rats, and then transplanted 
into the eyes of rats with a genetic retinal degeneration. 
Animals were then monitored for a period of 4 months 
post-transplantation and neural stem cell fate was 
determined using immunohistochemical techniques. 
Results revealed that adult rat hippocampal progenitor 
cells extensively integrated with the host retina, and that 
after 18 weeks post-transplantation, grafted cells 

expressed mature neuronal markers including NF-200, 

map-5 and calbindin.l97 Similar levels of hippocampal
derived neural stem cell integration have been observed 
when transplanted into adult rat retina that were 
mechanically injured.l98 

In a similarly designed investigation, Mizumoto and 
co-workersl99 assessed the effects of transplanting 
human fetal neural stem cells into a retinal 
degenerational rat model (RCS). Human neural 
progenitor cells isolated and cultured from 17-week-old 
fetal donor tissue were transplanted into the vitreous 
cavity of RCS rats and then monitored over a 4 week 
post-transplantational period. The human neural 
progenitor cells survived transplantation and after a 2 

week period underwent mature neuronal differentiation, 
as assessed by the detection of the neuronal-specific 
marker MAP.l99 

Retinal stem cells 

Interestingly, two other recent investigations have 
studied the multilinear potential of photoreceptor cells 
themselves.161.162 Ahmad and colleagues162 first reported 
that isolated embryonic retinal progenitor cells were 
capable of differentiating into neural and glial cell 
lineages, after the removal of epidermal growth factor 
(EGF) from its microenvironment. In a subsequent 
study162 this same group found that progenitor cells 
isolated from the pigmented ciliary bodies, although 
displaying retinal specific properties, were successfully 
differentiated into neural and glial cells. Although the 
retina originates from the neural tube it becomes 
regionally isolated and high specialised in early 
development. The fact that neural stem cells have been 
shown to develop retinal morphologies, and retinal cells 
neural and glial morphologies, only further emphasises 
the potential of these particular progenitor cells in 
specified cell lineage development. 

Conclusion 

As shown in this review bone marrow stromal cells play 
an important role in a number of physiological and 
pathological settings, being involved in cellular 
replacement and repair in response to injury. This review 
has summarised the current advances in this field to 
date, highlighting a number of areas where stem cells 
hold the potential to treat injury or disease. A number of 
recent studies mentioned in this review have shown the 
multilinear potential of MSCs outside haematopoietic 
lineages including hepatocyte, glial and muscle cell 
differentiation. This fact has enables researchers to 
contemplate the use of MSCs in the treatment of a whole 
array of disease settings including retinal degeneration. 
Despite their potential many limiting factors exist, 
including the fact that current methods have only been 
successful in obtaining a heterogeneous population of 
fully differentiated cells. In addition most of the target 
organs and tissues to be treated are composed of more 
than one fully differentiated cell type. Compounded to 
this is the complex structural array of the organ itself as 

well as the complex interactions that exist between the 
cells. Despite these obstacles, further investigations are 
essential to fully explore the great potential of MSC 
therapy. 
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