Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Eye
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. eye
  3. articles
  4. article
The role of the retinal pigment epithelium: Topographical variation and ageing changes
Download PDF
Your article has downloaded

Similar articles being viewed by others

Carousel with three slides shown at a time. Use the Previous and Next buttons to navigate three slides at a time, or the slide dot buttons at the end to jump three slides at a time.

Fundamental differences in patterns of retinal ageing between primates and mice

29 August 2019

Jaimie Hoh Kam, Tobias W. Weinrich, … Glen Jeffery

Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells

02 June 2021

Tapas C. Nag

Functional Imaging of the Outer Retinal Complex using High Fidelity Imaging Retinal Densitometry

11 March 2020

Tom H. Margrain, David Atkinson, … Ashley Wood

Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium

29 April 2020

Francisco J. Valiente-Soriano, Manuel Salinas-Navarro, … Marta Agudo-Barriuso

Revival of light signalling in the postmortem mouse and human retina

11 May 2022

Fatima Abbas, Silke Becker, … Frans Vinberg

Functional regulation of an outer retina hyporeflective band on optical coherence tomography images

13 May 2021

Shasha Gao, Yichao Li, … Haohua Qian

Sfrp1 deficiency makes retinal photoreceptors prone to degeneration

20 March 2020

Elsa Cisneros, Fabiana di Marco, … Paola Bovolenta

In vivo analysis of onset and progression of retinal degeneration in the Nr2e3rd7/rd7 mouse model of enhanced S-cone sensitivity syndrome

24 September 2021

Giulia Venturini, Despina Kokona, … Pascal Escher

Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa

23 November 2020

Sandeep Gopalakrishnan, Shima Mehrvar, … Janis T. Eells

Download PDF
  • Published: 01 May 2001

The role of the retinal pigment epithelium: Topographical variation and ageing changes

  • Mike Boulton1 &
  • Pierrette Dayhaw-Barker2 

Eye volume 15, pages 384–389 (2001)Cite this article

  • 24k Accesses

  • 288 Citations

  • 9 Altmetric

  • Metrics details

Abstract

The retinal pigment epithelium (RPE) is a single layer of post-mitotic cells, which functions both as a selective barrier to and a vegetative regulator of the overlying photoreceptor layer, thereby playing a key role in its maintenance. Through the expression and activity of specific proteins, it regulates the transport of nutrients and waste products to and from the retina, it contributes to outer segment renewal by ingesting and degrading the spent tips of photoreceptor outer segments, it protects the outer retina from excessive high-energy light and light-generated oxygen reactive species and maintains retinal homeostasis through the release of diffusible factors. The ageing characteristics of the RPE suggest that in addition to cell loss, pleomorphic changes and loss of intact melanin granules, significant metabolic changes occur resulting, at least in part, from the intracellular accumulation of lipofuscin. This pigment has been shown to be highly phototoxic and has been linked to several oxidative changes, some leading to cell death. While the aetiology of age-related macular degeneration is complex and is as yet unresolved, it is likely that accelerated ageing-like changes in the RPE play a fundamental role in the development of this condition.

References

  1. Hogan M, Alvarado J, Weddell J . Histology of the human eye. Philadelphia: Saunders, 1971.

  2. Boulton M . Ageing of the retinal pigment epithelium. In: Osborne N, Chader G, editors. Progress in retinal research. Oxford, New York: Pergamon Press, 1991:125–51.

  3. Peyman G, Spitznas M, Straatsma B . Peroxidase diffusion in the normal photocoagulated retina. Invest Ophthalmol 1976;10:181–98.

    Google Scholar 

  4. Cunha-Vaz J . The blood-retinal barriers. Doc Ophthalmol 1976;41:287–327.

    Article  CAS  Google Scholar 

  5. Stalmans P, Himpens B . Effect of increasing glucose concentrations and protein phosphorylation on intercellular communication in cultured rat retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1997;38:1598–609.

    CAS  PubMed  Google Scholar 

  6. Streeten B . Development of the human retinal pigment epithelium and the posterior segment. Arch Ophthalmol 1969;81:383–94.

    Article  CAS  Google Scholar 

  7. Marshall J . The ageing retina: physiology or pathology? Eye 1987;1:282–95.

    Article  Google Scholar 

  8. Boulton ME . The role of melanin in the RPE. In: Marmor M, Wolfensberger T, editors. The retinal pigment epithelium. Oxford: Oxford University Press, 1998:68–85.

  9. Hughes B, Gallemore R, Miller S . Transport mechanisms in the retinal pigment epithelium. In: Marmor M, Wolftensberger T, editors. The retinal pigment epithelium. Oxford: Oxford University Press, 1998:103–34.

  10. Rizzolo L . Polarity and the development of the outer blood-retinal barrier. Histol Histopathol 1997;12:1057–6.

    CAS  PubMed  Google Scholar 

  11. Pautler E, Tengerdy C . Transport of acidic amino acids by the bovine pigment epithelium. Exp Eye Res 1986;43:207–14.

    Article  CAS  Google Scholar 

  12. Miyamoto Y, Del Monte M . Na+-dependent glutamate transporter in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1994;35:3589–98.

    CAS  PubMed  Google Scholar 

  13. Harik S, Kalaria R, Whitney P, Andersson L, Lundahl P, Ledbetter S, Perry G . Glucose transporters are abundant in cells with ‘occluding’ junctions at the blood-eye barriers. Proc Natl Acad Sci USA 1990;87:4261–4.

    Article  CAS  Google Scholar 

  14. Chader G, Pepperberg D, Crouch R, Wiggert B . Retinoids and the retinal pigment epithelium. In: Marmor M, Wolfensberger T, editors. The retinal pigment epithelium. Oxford: Oxford University Press, 1998:135–51.

  15. Young R . The renewal of rod and cone outer segments in the rhesus monkey. J Cell Biol 1971;49:303–18.

    Article  CAS  Google Scholar 

  16. Boyle D, Tien L, Cooper N, Shepherd V, McLaughlin BJ . A mannose receptor is involved in retinal phagocytosis. Invest Ophthalmol Vis Sci 1991;32:1464–70.

    CAS  PubMed  Google Scholar 

  17. Finnemann S, Bonilha V, Marmorstein A, Rodriguez-Boulan E . Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alphav beta5 integrin for binding but not for internalization. Proc Natl Acad Sci USA 1997;94:12932–7.

    Article  CAS  Google Scholar 

  18. Ryeom S, Sparrow J, Silverstein R . CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci 1996;109:387–95.

    CAS  PubMed  Google Scholar 

  19. D'Cruz P, Yasumura D, Weir J, Matthes M, Abderrahim H, LaVail M, Vollrath D . Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000;9:645–51.

    Article  CAS  Google Scholar 

  20. Rakoczy P, Sarks S, Daw N, Constable I . Distribution of cathepsin D in human eyes with or without age-related maculopathy. Exp Eye Res 1999;69:367–74.

    Article  CAS  Google Scholar 

  21. Katz M, Shanker M . Development of lipofuscin-like fluorescence in the retinal pigment epithelium in response to protein inhibitor treatment. Mech Ageing Dev 1989;49:23–40.

    Article  CAS  Google Scholar 

  22. Rakoczy P, Kennedy C, Thompson-Wallis D, Mann K, Constable I . Changes in retinal pigment epithelial cell autoflourescence and protein expression associated with phagocytosis of rod outer segments in vitro. Biol Cell 1992;76:49–54.

    Article  CAS  Google Scholar 

  23. Wassell J, Ellis S, Burke J, Boulton M . Fluorescence properties of autofluorescent granules generated by cultured human RPE cells. Invest Ophthalmol Vis Sci 1998;39:1487–92.

    CAS  PubMed  Google Scholar 

  24. Dorey C, Wu G, Ebenstein D, Garsd A, Weiter J . Cell loss in the ageing retina: relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 1989;30:1691–9.

    CAS  Google Scholar 

  25. Gao H, Hollyfield J . Aging of the human retina: differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1992;33:1–17.

    CAS  PubMed  Google Scholar 

  26. Boulton M, Moriarty P, Jarvis-Evans J, Marcyniuk B . Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol 1994;78:125–9.

    Article  CAS  Google Scholar 

  27. Miceli M, Liles M, Newsome D . Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis. Exp Cell Res 1994;214:242–9.

    Article  CAS  Google Scholar 

  28. Beatty S, Boulton M, Henson D, Koh H-H, Murray I . Macular pigment and age-related macular degeneration. Br J Ophthalmol 1999;83:867–77.

    Article  CAS  Google Scholar 

  29. Newsome D, Miceli M, Liles M, Tate D, Oliver P . Anitoxidants in the retinal pigment epithelium. Prog Retinal Res 1994;13:101–23.

    Article  CAS  Google Scholar 

  30. Beatty S, Koh H-H, Henson D, Boulton M . The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000;45:115–34.

    Article  CAS  Google Scholar 

  31. Arking R . Biology of ageing. Sunderland, MA: Sinauer Associates, 1998.

  32. Campochiaro P . Growth factors in the retinal pigment epithelium and retina. In: Marmor M, Wolfensberger T, editors. The retinal pigment epithelium. Oxford: Oxford University Press, 1998:459–77.

  33. LaVail M, Unoki K, Yasumura D, Matthes M, Yancopoulos G, Steinberg R . Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci USA 1992;89:11249–53.

    Article  CAS  Google Scholar 

  34. Guan J, Gunn A, Sirimanne E, Tuffin J, Gunning M, Clark R, Gluckman P . The window of opportunity for neuronal rescue with insulin-like growth factor-1 after hypoxia-ischemia in rats is critically modulated by cerebral temperature during recovery. J Cerebral Blood Flow Metab 2000;20:513–9.

    Article  CAS  Google Scholar 

  35. Roberts A, Sporn M . Transforming growth factor-β. In: Clark R, editor. The molecular biology and cellular biology of wound repair. New York, London: Plenum Press, 1998;275–310.

  36. Guerrin M, Moukadiri H, Chollet P, Moro F, Dutt K, Malecaze F, Plouet J . Vasculotropin/vascular endothelial growth factor is an autocrine growth factor for human retinal pigment epithelial cells cultured in vitro. J Cell Physiol 1995;164:385–94.

    Article  CAS  Google Scholar 

  37. Del Priore L, Hornbeck R, Kaplan H, Jones Z, Valentino T, Mosinger-Ogilvie J, et al. Debridement of the pig retinal pigment epithelium in vivo. Arch Ophthalmol 1995;113:939–44.

    Article  CAS  Google Scholar 

  38. Shima D, Adamia A, Ferrara M, Yeo K-T, Yeo T-K, Allende R, et al. Hypoxie induction of endothelial growth factors in retinal cells: identification and characterisation of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med 1995;1:182–93.

    Article  CAS  Google Scholar 

  39. Charteris D . Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment. Br J Ophthalmol 1995;79:953–60.

    Article  CAS  Google Scholar 

  40. Tso M, Friedman E . The retinal pigment epithelium. III. Growth and development. Arch Ophthalmol 1968;80:214–6.

    Article  CAS  Google Scholar 

  41. Panda-Jonas S, Jonas J, Jakobczyk-Kmija M . Retinal pigment epithelial cell count distribution, and correlations in normal eyes. Am J Ophthalmol 1996;121:181–9.

    Article  CAS  Google Scholar 

  42. Curcio C, Saunders P, Younger P, Malek G . Peripapillary chorioretinal atrophy: Bruch's membrane changes and photoreceptor loss. Ophthalmology 2000;107:334–43.

    Article  CAS  Google Scholar 

  43. Garner A, Sarks S, Sarks J . Degenerative and related disorders of the retina and choroid. In: Garner A, Klintworth G, editors. Pathobiology of ocular disease. New York: Marcel Dekker, 1994:631–74.

  44. Feeney-Burns L, Hilderbrand E, Eldridge S . Aging human RPE: morphometric analysis of macular, equatorial and peripheral cells. Invest Ophthalmol Vis Sci 1984;25:195–200.

    CAS  Google Scholar 

  45. Schmidt S, Peisch R . Melanin concentration in normal human retinal pigment epithelium: regional variation and age-related reduction. Invest Ophthalmol Vis Sci 1986;27:1063–7.

    CAS  PubMed  Google Scholar 

  46. Weiter J, Delori F, Wing G, Fitch K . Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 1986;27:145–52.

    CAS  Google Scholar 

  47. Feeney L . Lipofuscin and melanin of human retinal pigment epithelium: florescence, enzyme, cytochemical and ultrastructural studies. Invest Ophthalmol Vis Sci 1978;17:583–600.

    CAS  PubMed  Google Scholar 

  48. Wing G, Blanchard G, Weiter J . The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1978;17:601–7.

    CAS  Google Scholar 

  49. Yin D . Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radical Biol Med 1996;21:871–88.

    Article  CAS  Google Scholar 

  50. Eldred G, Lasky M . Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 1993;361:724–6.

    Article  CAS  Google Scholar 

  51. Boulton M, Dontsov A, Jarvis-Evans J, Ostovsky M, Svistunenko D . Lipofuscin is a photoinducible free radical generator. Photochem Photobiol B: Biol 1993;19:201–4.

    Article  CAS  Google Scholar 

  52. Rozanowska M, Boulton M, Burke J, Korytowski W, Jarvis-Evans J, Sarna T . Blue light-induced reactivity of retinal age pigment. J Biol Chem 1995;270:18825–30.

    Article  CAS  Google Scholar 

  53. Rozanowska M, Wessels J, Boulton M, Burke J, Rodgers M, Truscott T, et al. Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radical Biol Med 1998;24:1107–12.

    Article  CAS  Google Scholar 

  54. Wassell J, Davies S, Bardsley W, Boulton M . Photoreactivity of the retinal age pigment lipofuscin. J Biol Chem 1999;274:23828–32.

    Article  CAS  Google Scholar 

  55. Winkler B, Boulton M, Gottsch J, Sternberg P . Oxidative damage and age-related macular degeneration. Mol Vision 1999;5:32.

    CAS  Google Scholar 

  56. Friedrichson T, Kalbach H, Buck P, van Kuijk F . Vitamin E in macular and peripheral tissues of the human eye. Curr Eye Res 1995;14:693–701.

    Article  CAS  Google Scholar 

  57. Liles M, Newsome D, Oliver P . Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol 1991;109:1285–8.

    Article  CAS  Google Scholar 

  58. Castorina C, Campisi A, Di Giacomo C, Sorrenti V, Russo A, Vanella A . Lipid peroxidation and antioxidant enzymatic systems in rat retina as a function of age. Neurochem Res 1992;17:599–604.

    Article  CAS  Google Scholar 

  59. Cai J, Nelson K, Wu M, Sternberg P, Jones D . Oxidative damage and protection of the RPE. Prog Retinal Res 2000;19:205–21.

    Article  CAS  Google Scholar 

  60. Ballinger S, Van Houten B, Jin G, Conklin C, Godley B . Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 1999;68:765–72.

    Article  CAS  Google Scholar 

  61. Hjelmeland L . Sensecence of the retinal pigmented epithelium. Invest Ophthalmol Vis Sci 1999;40:1–2.

    CAS  PubMed  Google Scholar 

  62. Matsunaga H, Handa JT, Aotaki-Keen A, Sherwood SW, West MD, Hjelmeland LM . Beta-galactosidase histochemistry and telomere loss in senescent retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1999;40:197–202.

    CAS  PubMed  Google Scholar 

  63. Handa J, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty G, te Koppele J, et al. Increase in the advanced glycation end product pentosidine in Bruch's membrane with age. Invest Ophthalmol Vis Sci 1999;40:775–9.

    CAS  PubMed  Google Scholar 

  64. Kasper M, Schinzel R, Niwa T, Munch G, Witt M, Fehrenbach H, et al. Experimental induction of AGEs in fetal L132 lung cells changes the level of intracellular cathepsin D. Biochem Biophys Res Commun 1999;261:175–82.

    Article  CAS  Google Scholar 

  65. Handa J, Reiser K, Matsunaga H, Hjelmeland L . The advanced glycation endproduct pentosidine induces the expression of PDGF-B in human retinal pigment epithelial cells. Exp Eye Res 1998;66:411–9.

    Article  CAS  Google Scholar 

  66. Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, et al. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 1998;101:12219–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Optometry and Vision Sciences, Cardiff University, Cardiff, CF10 3NB, UK

    Mike Boulton

  2. Pennsylvannia College of Optometry, Elkins Park, 19027, PA, USA

    Pierrette Dayhaw-Barker

Authors
  1. Mike Boulton
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pierrette Dayhaw-Barker
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mike Boulton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boulton, M., Dayhaw-Barker, P. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye 15, 384–389 (2001). https://doi.org/10.1038/eye.2001.141

Download citation

  • Issue Date: 01 May 2001

  • DOI: https://doi.org/10.1038/eye.2001.141

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration

    • Samaneh Dehghan
    • Reza Mirshahi
    • Masood Naseripour

    Stem Cell Research & Therapy (2022)

  • Dynamic full-field optical coherence tomography allows live imaging of retinal pigment epithelium stress model

    • Kassandra Groux
    • Anna Verschueren
    • Kate Grieve

    Communications Biology (2022)

  • Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration

    • Jen-Zen Chuang
    • Nan Yang
    • Ching-Hwa Sung

    Nature Communications (2022)

  • An IoT based predictive modeling for Glaucoma detection in optical coherence tomography images using hybrid genetic algorithm

    • Law Kumar Singh
    • Pooja
    • Munish Khanna

    Multimedia Tools and Applications (2022)

  • Oxidative stress in retinal pigment epithelium impairs stem cells: a vicious cycle in age-related macular degeneration

    • Raffaella Lazzarini
    • Michele Nicolai
    • Monica Mattioli-Belmonte

    Molecular and Cellular Biochemistry (2022)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Special Issues
  • About the Partner
  • EYE Covers
  • Contact
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Eye (Eye) ISSN 1476-5454 (online) ISSN 0950-222X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Nature Research Academies
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • California Privacy Statement
Springer Nature

© 2023 Springer Nature Limited