
Mechanisms of ageing 

Abstract 

Recent experimental work from a variety of 

biological systems, ranging from yeast to 

human beings, lends increasing support to the 

view that stochastic damage inflicted to 

biological macromolecules is the driving force 

for the ageing process. The damage is derived 

from small reactive molecules, most 

prominently reactive oxygen intermediates 

(ROI), that arise during normal cellular 

metabolism and are associated with important 

if not essential cellular functions. The major 

classes of macromolecules at risk are proteins, 

lipids and DNA, but damage to DNA (both 

nuclear and mitochondrial) may entail 

particularly severe consequences. Cellular 

dysfunction resulting from macromolecular 

damage can be detected as a variety of 

expressions, such as genomic instability, 

inappropriate cell differentiation events or cell 

death. While for post-mitotic cell types 

replacement of the dead cell by another cell of 

the same lineage is not possible, mitotic cell 

types may initially replace dead cells via cell 

proliferation. But exhaustion of the self­

renewal capacity of the respective lineage, by 

either replication-associated or damage­

associated telomere shortening, will 

ultimately also lead to loss of parenchymal cell 

mass and functional impairment of tissues, the 

latter being a typical feature of ageing of 

tissues and organs. It has been demonstrated 

in various experimental systems that the rate 

ageing of can be retarded by lowering the 

production of endogenous ROI or by 

improving cellular anti-oxidative defences. 

Whether augmentation of cellular DNA repair 

capacity will have the same effect remains to 

be seen. 

Ageing can been defined as the time-dependent 
general decline of physiological functions of an 
organism, which is associated with a 
progressively increasing risk of morbidity and 
mortality.1 The field of biogeronotology is 
currently in the process of developing into an 
important and competitive discipline of basic 
biomedical research, but the mechanisms 
underlying ageing are still far from being 
understood. 

Table 1 presents a selection of the currently 
preferred biological systems in ageing research. 
The major results from work performed in all 
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these diverse systems is summarised in a highly 
simplified scheme as given in Fig. 1, which is by 
no means intended to be comprehensive. The 
driving force for the ageing process seems to be 
'damage' (i.e. stochastic chemical change) 
inflicted to biological macromolecules, which 
interferes with their function. Importantly, most 
damage is derived from small reactive 
molecules that arise during normal cellular 
metabolism and are associated with important if 
not essential cellular functions such as oxygen 
transport and respiration, phagocyte activity, or 
detoxification of xenobiotics. Reactive oxygen 
intermediates (ROI; comprising singlet oxygen, 
superoxide, hydrogen peroxide and hydroxyl 
radicals) feature most prominently among these 
endogenous damaging agents and can create a 
state of 'oxidative stress,.33 In addition, nitric 
oxide and its metabolite peroxinitrite, as well as 
endogenously formed alkylating agents and the 
aldehyde products of lipid peroxidation, all 
have the capacity to damage macromolecules. 
The major classes of macromolecules at risk are 
proteins, lipids and DNA, but damage to DNA 
may be particularly harmful, since in contrast to 
most other macromolecules there is little if any 
turnover of DNA to dilute the damage. In 
addition, since all genetic information of the 
cells resides in DNA and most genes are present 
at a low copy numbers, any errors in the coding 
function of DNA can' amplify' to the level of 
proteins and their respective functions. It 
should be noted that mitochondria carry their 
own genome, and mitochondrial DNA is 
particularly vulnerable to oxidative damage to 
the close proximity to the respiratory chain, the 
major site of ROI formation,34 and is subject to a 
very high mutation rate?5 

The cellular dysfunction resulting from 
macromolecular damage can be detected as a 
variety of expressions, such as genomic 
instability, inappropriate cell differentiation 
events or cell death. Genomic instability is a 
term collectively describing alterations in the 
genome, such as point mutations in DNA, 
amplifications and deletions of DNA sequences, 
gene rearrangements, and structural or 
numerical chromosomal aberrations. Genomic 
instability is recognised as a driving force for 
the process of carcinogenesis, and indeed for 
most cancers the single most important risk 
factor is age.36 Damage-driven cell 
differentiation events, on the other hand, can 
lead to secondary consequences, resulting from 
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Table 1. Preferred biological systems in current ageing research 

Species Available biological material and typical experimental setting 

Saccharomyces cerevisiae 
(yeast) 

• Transformation experiments (gene knock-out/overexpression)2,3 

• Long-lived laboratory strains available4 Podospora anserina 
(filamentous fungus) 

Caenorhabditis elegans 
(nematode) 

• Genes identified which confer life span extension if inactivated4 

• Mutants isolated with extended life spans 

• Transgenic worms with extended life spans 

• Caloric restriction to extend life span6 

• Drugs which mimic Mn-superoxide dismutase to extend life span7 

Drosophila melanogaster • Transgenic flies with extended life span8 

• Low-molecular-weight antioxidants in diet to extend life span9 

Rodents • Mutants with premature ageing (e.g. Klothol0) 
• Transgenic mice to study accumulation of mutationsll 

• Gene knock-out mice to create symptoms resembling normal human ageing12 or to extend life span13 

• Tissue stem cells and ageing14 

• Caloric restriction to extend life span 15,16 

• C'.ell culture work. lincluding transtedion experIments) on celluhr stress response�l 
• Caloric restriction 18 Primates 

Humans • Progeroid syndromes (e.g. Werner syndrome,19,20 Progeria Hutchinson Gilford,21 
DNA repair deficiency syndromes22) 

• Comparisons between long-lived people (centenarians) and controls23,24 

• Cell culture work (including transfection experiments) on replicative ageing and cellular stress 
responses2S-32 

It should be noted that in all the systems listed above comparative studies between young and old individuals are being conducted 
concerning gene expression or at the level of organ/ cellular function. 

alterations in the metabolism of the differentiated cell 
(e.g. altered pattern of secretion of inflammatory 
mediators or extracellular matrix components). Finally, 
non-functional or dysfunctional cells can be eliminated 
by apoptosis (programmed cell death). The immediate 
consequences will differ according to cell type: For post­
mitotic cells (e.g. neurones, muscle cells), replacement of 
the dead cell by another cell of the same lineage may not 
be possible. Instead, neighbouring cells may take over 
the function of the lost one to some extent, while the 
filling of the 'empty space' will rather occur by 
proliferating connective tissue, equivalent to scar 
formation, For mitotic cell types (e.g. stem cell systems, 
fibroblasts), the lost cell may initially be replaced via cell 
proliferation, thus preventing any immediate structural 
or functional impairment of the tissue. However, the 
proliferative self-renewal capacity of the respective 
lineage declines and eventually becomes exhausted, be it 
through reaching replicative senescence25 (the 'Hayflick 
limit') due to the replication-associated loss of telomeric 
repeat units at the end of chromosomes26 or due to 
accelerated telomere loss resulting from the 
accumulation of DNA damage in telomeres.z9 Then the 
same situation arises as outlined above for post-mitotic 
cells, and the loss of parenchymal cell mass as well as 
functional impairment will become manifest, the latter 
being a typical feature of ageing in many tissues and 
organs. 

It is likely that cells may accumulate damage or 
genomic instabilities slowly over time without any 
significant phenotypic effect. Only when a critical 
threshold of cumulative damage (or of primary 
consequences of damage) is reached will the cells cease 
to function properly. Such functional deficit will first 
become manifest if the organism is undergoing some 

physical stress (such as trauma, vigorous physical 
activity, electrolyte and nutrient imbalances, infection), 
thus challenging the spare capacities of organ function 
which are lost with ageing. 

Based on the above reasoning, the following may be 
deduced: 

(1) A low rate of endogenous ROJ formation will keep the 
risk of DNA damage low. In fact, a long-lived mutant of the 
filamentous fungus Podospora anserina displays reduced 
ROI production in mitochondria.4 Likewise the rate of 
mitochondrial ROI formation has been shown to be much 
lower in long-lived versus short-lived vertebrate 
species?7,38 Interestingly, caloric restriction (i.e. 
undernutrition coupled with a full supply of vitamins, 
minerals and other essential dietary components) in 
rodents seems to decrease ROI formation,16 and this may 
be a crucial mechanism for its life-span extension and 
anti-cancer effects. 

(2) Efficient anti-oxidative defences will prevent at least 
some ROJ from damaging DNA. To some extent, cells are 
protected against the damaging effects of ROI by means 
of non-enzymatic and enzymatic antioxidant activities 
through which oxidants are detoxified before they can 
damage cellular macromolecules?3 In a number of 
experimental systems involving genetic or 
pharmacological interventions it could be demonstated 
that an increased cellular anti-oxidative capacity retards 
the ageing process and extends life span?-9 

(3) DNA repair mechanisms will antagonise the 
accumulation of DNA damage. Once DNA damage has 
already been inflicted, at least some may be removed by 
DNA repair activities. The pivotal importance of efficient 
DNA repair systems in the protection against physical or 

chemical carcinogenesis has long been demonstrated in a 

number of experimental systems22 and positive 
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Fig. 1. Macromolecular damage and the ageing process. CAT, catalase; CYP450, cytochrome P450; GPX, glutathione peroxidase; ROI, reactive 
oxygen intermediates; SOD, superoxide dismustase. For details see text. 

correlations have been described between the activity of 
DNA nucleotide-excision repair and life span of 
mammalian species.39,40 Whether augmentation of 
cellular DNA repair capacity will have the same effect 
remains to be seen. 

Our own work has been focused on an enzymatic 
activity, poly(ADP-ribosyl)ation,41,42 which is triggered 
by DNA strand breaks and is associated with DNA base­
excision repair43 (Le. a pathway that preferentially deals 
with oxidative DNA damage). In a comparative study we 
established a positive correlation between the cellular 
capacity to form poly(ADP-ribose) and life span in 
mammalian species,"w and we have begun to unravel the 
underlying mechanism at the molecular level.45 In 

addition, we showed an association between high 
cellular poly(ADP-ribosyl)ation capacity and longevity in 
humans.24 Furthermore, we performed cell culture 
transfection experiments to further elucidate the 
biological role of poly(ADP-ribosyl)ation. Our recent 
data revealed that poly(ADP-ribosyl)ation acts as a 
negative regulator of genomic instability.46 Viewed 

together with the fact that cells from long-lived species44 
or individuals24 possess high poly(ADP-ribosyl)ation 
capacity, the picture emerges that poly(ADP­
ribosyl)ation may actually be a key factor responsible for 
tuning the rate of genomic instability events, provoked 
by the constant attack by endogenous and exogenous 
DNA-damaging agents, to a level that is just appropriate 
for the longevity potential of a given organism or 
species.47 

Ageing-associated diseases and disabilities can affect 
any organ in the body and place an already enormous yet 
rapidly growing burden on the social and economic 
systems in developed countries. It is obvious that 
detailed studies of the multiple components of cellular 
damage, protection and repair pathways and their 
networks of interaction48 are required to fully 
understand the molecular basis of the ageing process. 
Such understanding is indispensable if we are to develop 
novel modalities of prevention and treatment of ageing­
associated pathologies. 
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