Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lipid peroxidation in proliferative vitreoretinopathies

Abstract

Purpose To study the lipid hydroperoxide activity in vasoproliferative and fibroproliferative retinal disorders.

Methods Vitreous body samples from patients undergoing vitrectomy because of proliferative vitreoretinopathy (PVR; n = 12) or proliferative diabetic retinopathy (PDR; n = 15), and rhegmatogenous retinal detachment/macular hole/epiretinal membranes as the comparison group (CG; n = 14), were analysed for protein content and basal and induced lipid peroxidation (LPO), as determined by the thiobarbituric acid reactive substances (TBARS) test and LPO 586 commercial kit. The antioxidant activity for Superoxide dismutase (SOD) and catalase (CAT) was also assayed.

Results Malondialdehyde (MDA)-like metabolites and 4-hydroxynonenal (4-HNE) mean values were first measured to assess basal LPO, and found to be significantly higher in the PVR and PDR cases than in the CG (p ≤ 0.0001). LPO induced by nicotine adenine dinucleotide phosphate iron (NADPH-Fe) was then assayed and the data showed that MDA mean values were 5-fold greater for the PVR and PDR eyes than in the case of basal LPO (p ≤ 0.0001). SOD activity was significantly smaller in the PVR (p = 0.0010) and PDR (p ≤ 0.0001) groups than in the CG. CAT levels displayed significantly lower values in the PVR and PDR cases than in the CG (p ≤ 0.0001). No significant differences in free radical (FR) formation and antioxidant status between PVR and PDR patients were observed.

Conclusions Fibrovascular proliferative vitreoretinopathies correlate with increased FR formation and decreased antioxidant activity in the human vitreous body.

References

  1. 1

    Del Maestro RR An approach to free radicals in medicine and biology. Acta Physiol Scand 1980;492:153–68.

  2. 2

    Halliwell B, Gutteridge JMC . Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet 1984;1:1396–7.

    CAS  Article  Google Scholar 

  3. 3

    Comporti M . Lipid peroxidation: an overview. In: Poli G, Albano E, Dianzani MU, editors. Free radicals: from basic science to medicine. Turin: Birkhäuser, 1993:65–79.

  4. 4

    Davis RJ, Bulkley GB, Traystman RJ . Role of oxygen free radicals in focal brain ischaemia. Fed Proc 1987;46:799–802.

    Google Scholar 

  5. 5

    Fridovich I . The biology of oxygen radicals. Science 1978;201:875–80.

    CAS  Article  Google Scholar 

  6. 6

    Chance B, Sies H, Boveris A . Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.

    CAS  Article  Google Scholar 

  7. 7

    Esterbauer H, Zollner HJ, Lang J . Metabolism of the lipid peroxidation product formation 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions. Biochem J 1985;228:363–73.

    CAS  Article  Google Scholar 

  8. 8

    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:760–85.

    Article  Google Scholar 

  9. 9

    Watson BD . Evaluation of the concomitance of lipid peroxidation in experimental models of cerebral ischaemia and stroke. Prog Brain Res 1993;96:69–95.

    CAS  Article  Google Scholar 

  10. 10

    Buege J, Aust S . Microsomal lipid peroxidation. Methods Enzymol 1978;12:302–10.

    Article  Google Scholar 

  11. 11

    Verdejo C, Marco P, Pinazo-Durán MD, Portolés M, Gonzalez-Tomás J . Lipid peroxidation in proliferative vitreoretinopathy and vascular retinopathies. Arch Soc Esp Oftalmol 1997;72:393–400.

    Google Scholar 

  12. 12

    Azorin I, Bella MC, Iborra FJ, Fornás E, Renau-Piqueras J . Effects of ter-butyl hydroperoxide addition on spontaneous chemiluminescence in brain. Free Radical Biol Med 1995;19:795–803.

    CAS  Article  Google Scholar 

  13. 13

    Montoliu C, Vallés S, Renau-Piqueras J, Guerri C . Ethanolinduced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J Neurochem 1994;63:1855–62.

    CAS  Article  Google Scholar 

  14. 14

    Pinazo-Durán MD, Verdejo C, Montoliu C, Guerri C . Free radical formation in the eyes during chronic alcohol intoxication. Arch Soc Esp Oftalmol (in press).

  15. 15

    Bensinger RE, Johnson CM . Luminol assay for Superoxide dismutase. Ann Biochem 1987;110:142–5.

    Google Scholar 

  16. 16

    Paoletti F, Mocali A . Determination of Superoxide dismutase activity by a purely chemical system based on NAD(P)H oxidation. Methods Enzymol 1990;186:209–20.

    CAS  Article  Google Scholar 

  17. 17

    Aebi AH . La catalase erythrocytaire. In: Exposés annuels de biochimie médicale. 29ième série. Paris: Masson, 1969:139–66.

  18. 18

    Augustin AH, Breipohl W, Böker T, Lutz J, Spitznas M . Increased lipid peroxide levels and myeloperoxidase activity in the vitreous of patients suffering from proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 1993;231:647–50.

    CAS  Article  Google Scholar 

  19. 19

    Girelli D, Olivieri O, Astanzial AM, Guarini P, Trevisan MT, Bassi A, Corrocher R . Factors affecting the thiobarbituric acid test as index of red blood cell susceptibility to lipid peroxidation: a multivariate analysis. Clin Chim Acta 1994;227:45–57.

    CAS  Article  Google Scholar 

  20. 20

    Saornil MA, Pastor JC . Role of intraocular irrigating solutions in the pathogenesis of post-vitrectomy retinal edema. Curr Eye Res 1987;6:1369–79.

    Article  Google Scholar 

  21. 21

    Kehrer JP . Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 1993;23:21–48.

    CAS  Article  Google Scholar 

  22. 22

    Luscinskas FW, Cybulsky MO, Kiely J, Peckins CS, Davis VM, Gimbrone MA Jr. Cytokine-activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. J Immunol 1991;146:1617–25.

    CAS  PubMed  Google Scholar 

  23. 23

    Parola M, Albano E, Leonarduzzi G, Muraca R, Dianzani I, Poli G, et al. Evidence for a possible role of lipid peroxidation in experimental liver fibrosis. In: Poli G, Albano E, Dianzani MU, editors. Free radicals: from basic science to medicine. Turin: Birkhäuser, 1993:274–86.

  24. 24

    Burke JM, Twining SS . Vitreous macrophage elicitation: generation of stimulants for pigment epithelium in vitro. Invest Ophthalmol Vis Sci 1987;28:1100–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Meneghini R, Martins EAL, Calderaro M . DNA damage by reactive oxygen species: the role of metals. In: Poli G, Albano E, Dianzani MU, editors. Free radicals: from basic science to medicine. Turin: Birkhäuser, 1993:102–12.

  26. 26

    Frank RN . Etiologic mechanisms in diabetic retinopathy. In: Ryan SJ, editor. Retina, vol II. St Louis: CV Mosby, 1989:301–26.

  27. 27

    Sheiki D, Itin A, Soffer D, Keshet E . Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature 1992;359:843–5.

    Article  Google Scholar 

  28. 28

    Elker SG, Einer VM, Jaffe JG, Stuart A, Kunkel SL, Strieter RM . Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res 1995;14:1045–53.

    Article  Google Scholar 

  29. 29

    Wiedemann P, Weiler M . The pathophysiology of proliferative vitreoretinopathy. Acta Ophthalmol (Copenh) 1988;189(Suppl):7–13.

    Google Scholar 

  30. 30

    Braudoin C, Gastaud P . La proliferation vitreoretinienne. II. Hypothèses pathogeniques. J Fr Ophtalmol 1994;17:800–11.

    Google Scholar 

  31. 31

    Fuchs J, Packer L . Oxidants and antioxidants. In: Sies H, editor. Oxidant stress. London: Academic Press, 1991:550–83.

  32. 32

    Recasens JF, Green K . The effects of age and inflammation on antioxidant enzyme activity in the eye. Age Ageing 1992;15:114–7.

    CAS  Google Scholar 

  33. 33

    Rothstein M . The alteration of enzymes in aging. Modem Aging Res 1985;7:53–67.

    CAS  Google Scholar 

  34. 34

    Burke JM . Vitreal Superoxide and Superoxide dismutase after haemorrhagic injury: the role of invasive cells. Invest Ophthalmol Vis Sci 1981;20:435–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M D Pinazo-Duran.

Additional information

This work was presented in part at the Annual Meeting of the Royal College of Ophthalmologists in Edinburgh 1996 and Glasgow 1998, as a poster

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verdejo, C., Marco, P., Renau-Piqueras, J. et al. Lipid peroxidation in proliferative vitreoretinopathies. Eye 13, 183–188 (1999). https://doi.org/10.1038/eye.1999.48

Download citation

Keywords

  • Antioxidants
  • Diabetes mellitus
  • Free radicals
  • Lipid peroxidation
  • Vitreous body

Further reading

Search

Quick links