The development and maintenance of emmetropia

Abstract

The development and maintenance of emmetropia The human eye is programmed to achieve emmetropia in youth and to maintain emmetropia with advancing years. This is despite the changes in all eye dimensions during the period of growth and the continuing growth of the lens throughout life. The process of emmetropisation in the child's eye is indicated by a shift from the Gaussian distribution of refractive errors around a hypermetropic mean value at birth to the non-Gaussian leptokurtosis around an emmetropic mean value in the adult. Emmetropisation is the result of both passive and active processes. The passive process is that of proportional enlargement of the eye in the child. The proportional enlargement of the eye reduces the power of the dioptric system in proportion to the increasing axial length. The power of the cornea is reduced by lengthening of the radius of curvature. The power of the lens is reduced by lengthening radii of curvature and the effectivity of the lens is reduced by deepening of the anterior chamber. Ametropia results when these changes are not proportional. The active mechanism involves the feedback of image focus information from the retina and consequent adjustment of the axial length. Defective image formation interferes with this feedback and ametropia then results. Heredity determines the tendency to certain globe proportions and environment plays a part in influencing the action of active emmetropisation. The maintenance of emmetropia in the adult in spite of continuing lens growth with increasing lens thickness and increasing lens curvature, which is known as the lens paradox, is due to the refractive index changes balancing the effect of the increased curvature. These changes may be due to the differences between nucleus and cortex or to gradient changes within the cortex.

References

  1. 1

    Steiger A . Die Entstehung der sphärischen Refraktionen des menslichen Auges. Berlin: Karger, 1913.

  2. 2

    Tron E . Über die optischen Grundlagen der Ametropie. Graefes Arch Ophthalmol 1934;132:182–223.

    Article  Google Scholar 

  3. 3

    Stentström S . Untersuchungen über die Variation und Kovariation der optischen Elemente des menslishes Auges. Acta Ophthalmol (Copenh) 1946;Suppl XXVI.

  4. 4

    Sorsby A, Benjamin B, Davey JB, et al. Emmetropia and its aberrations. MRC special report series no. 293. London. Her Majesty's Stationery Office, 1961.

  5. 5

    Sorsby A, Leary GA, Richards MJ . Correlation ametropia and component ametropia. Vision Res 1962;2:309–13.

    Article  Google Scholar 

  6. 6

    Sorsby A . Modern ophthalmology. Vol. 3. London: Butterworth, 1964. 3–20.

  7. 7

    van Alphen GWHM . On emmetropia and ametropia. Ophthalmologica 1961;142(Suppl):1–92.

    Article  Google Scholar 

  8. 8

    Delmarcelle Y, Francois J, Goes F, Colignon-Brach J, Luyckx-Bacus J, Verbraeken H . Biometrie oculaire clinique (oculometrie). Bul Soc Belge Ophtalmol 1976;172:part 1.

  9. 9

    Francois J, Goes F . Ultrasonographic study of 100 emmetropic eyes. Ophthalmologica 1977;175:321–7.

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Seiler T, Kraffel U, Wollensak J . Emmetropisation: a statistical study. Klin Monatsbl Augenheilkd 1990;197:138–41.

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Koretz JF, Rogot A, Kaufman PL . Physiological strategies for emmetropia. Trans Am Ophthalmol Soc 1995;93:105–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Sorsby A, Benjamin B, Bennett A . Steiger on refraction: reappraisal. Br J Ophthalmol 1981;65:805–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Sorsby A, Leary GA . Refraction and its components in twins. Special report series no. 303. London: Medical Research Council, 1962.

  14. 14

    Kimura T . Developmental changes of the optical components in twins. Acta Soc Ophthalmol Jpn 1965;69:963–9.

    Google Scholar 

  15. 15

    Minkovitz JB, Essary LR, Walker RS, Chansue E, Cabrera GM, Koch DD, Pepose JS . Comparative corneal topography and refractive parameters in monozygotic and dizygotic twins. Invest Ophthalmol Vis Sci 1993;34 (Suppl):1218.

    Google Scholar 

  16. 16

    Norton TT, Siegwart JT JR. Animal models of emmetropization: matching axial length to the focal plane. J Am Optom Assoc 1995;66:405–14.

    CAS  PubMed  Google Scholar 

  17. 17

    Hosaka A . Population studies: myopia experience in Japan. Acta Ophthalmol Suppl 1988;185:37–40.

    CAS  PubMed  Google Scholar 

  18. 18

    Straub M . Über die Aetiologie der Brechungsanomalien des Auges und den Ursprung der Emmetropie. Graefes Arch Ophthalmol 1909;70:130–99.

    Article  Google Scholar 

  19. 19

    Garner LF, Yap M, Scott R . The crystalline lens power in myopia. Optom Vis Sci 1992;69:863–5.

    CAS  PubMed  Article  Google Scholar 

  20. 20

    McBrien NA, Millodot M . A biometric investigation of late onset myopic eyes. Acta Ophthalmol (Copenh) 1987;65:461–8.

    CAS  Article  Google Scholar 

  21. 21

    Zadnik K, Mutti DO, Fusaro RE, Adams AJ . Longitudinal evidence of crystalline lens thinning in children. Invest Ophthalmol Vis Sci 1995;36:182–7.

    Google Scholar 

  22. 22

    Jansson F . Measurements of intraocular distances by ultrasound. Acta Ophthalmol (Copenh) 1963;Suppl 74.

  23. 23

    Sorsby A, Benjamin B, Sheridan M . Refraction and its components during the growth of the eye from the age of three. MRC special report series no. 301. London: Her Majesty's Stationery Office, 1961.

  24. 24

    Larsen JS . The sagittal growth of the eye. Acta Ophthalmol (Copenh) 1971;49:873–86.

    CAS  Article  Google Scholar 

  25. 25

    Fledelius HC, Christensen A . Reappraisal of the human ocular growth curve in fetal life, infancy, and early childhood. Br J Ophthalmol 1996;80:918–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Fledelius HC . Ophthalmic changes from the age of 10 to 18 years: a longitudinal study of sequels to low birth weight. IV. Ultrasound oculometry of vitreous and axial length. Acta Ophthalmol (Copenh) 1982;60:403–11.

    CAS  Article  Google Scholar 

  27. 27

    Zadnik K . Myopia development in childhood. Optom Vis Sci 1997;74:603–8.

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Ehrlich DL, Braddick OJ, Atkinson J, Anker S, Weeks F, Hartley T, et al. Infant emmetropization: longitudinal changes in refraction components from nine to twenty months of age. Optom Vis Sci 1997;74:822–43.

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Slataper FJ . Age norms of refraction and vision. Arch Ophthalmol 1950;43:466–81.

    Article  Google Scholar 

  30. 30

    Cook RC, Glasscock RE . Refractive and ocular findings in the newborn. Am J Ophthalmol 1951;34:1407–13.

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Gwiazda J, Thorn F, Bauer J, Held R . Emmetropization and the progression of manifest refraction in children followed from infancy to puberty. Clin Vision Sci 1993;8:337–34.

    Google Scholar 

  32. 32

    Luyckx J . Mesure des composantes optique de l'oeil du nouveau-née par echographie ultrasinique. Arch Ophtalmol (Paris) 1966;26:159–70.

    CAS  Google Scholar 

  33. 33

    Manzitti E, Darnel A, Gamio S, Bennozi J . Eye length in congenital cataracts. In: Cotlier E, Lambert S, Taylor D, editors. Congenital cataracts. RG Landes, 1994:251–9.

  34. 34

    Forbes J . In: Brown NAP, Bron AJ, editors. Lens disorders: a clinical manual of cataract diagnosis. Oxford: Butterworth-Heinemann, 1996:22.

  35. 35

    Weale RA . A biography of the eye. London: HK Lewis, 1982:108–15.

  36. 36

    Harding JJ, Crabbe MJC . The lens: development, proteins, metabolism and cataract. In: Davson H, editor. The eye. 3rd ed. vol 1B. London: Academic Press, 1984:207–492.

  37. 37

    Brown N . Dating the onset of cataract. Trans Ophthalmol Soc UK 1976;96:18–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Brown NAP, Bron AJ, Sparrow JM . Central compaction in the process of lens growth as indicated by lamellar cataract. Br J Ophthalmol 1988;72:538–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Medina A, Fariza E . Emmetropization as a first-order feedback system. Vision Res 1993;33:21–6.

    CAS  PubMed  Article  Google Scholar 

  40. 40

    McBrien NA, Norton TT . The development of ocular growth and refractive state in normal and monocularly deprived tree shrews (Tupaia belangen). Soc Neurosci Abstr 1987;13:1535.

    Google Scholar 

  41. 41

    Wallman J, Adams J, Trachtman JN . The eyes of young chickens grow towards emmetropia. Invest Ophthalmol Vis Sci 1981;20:557–61.

    CAS  PubMed  Google Scholar 

  42. 42

    Wallman J, Adams JI . Developmental aspects of experimental myopia in chicks. Vision Res 1987;27:1139–63.

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Crewther SG, Nathan J, Kiely PM, Brennan NA, Crewther DP . The effect of defocusing contact lenses on refraction in cynomolgus monkeys. Clin Vis Sci 1988;3:221–8.

    Google Scholar 

  44. 44

    Smith EL III, Hung L, Harwerth RS . Effects of optically induced blur on the refractive status of young monkeys. Vision Res 1994;34:293–301.

    PubMed  Article  Google Scholar 

  45. 45

    Hung LF, Crawford MLJ, Smith EL . Spectacle lenses alter eye growth and the refractive status of young monkeys. Nature Med 1995;1:761–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Troilo D . Neonatal eye growth and emmetropisation: a literature review. Eye 1992;6:154–60.

    PubMed  Article  Google Scholar 

  47. 47

    Smith EL III, Fox DA, Duncan GC . Refractive error changes in kitten eyes produced by chronic on-channel blockade. Vision Res 1991;31:833–4.

    PubMed  Article  Google Scholar 

  48. 48

    Rohrer B, Iuvone PM, Stell WK . Stimulation of dopaminergic amacrine cells by stroboscopic illumination of fibroblast growth factor (ßFGF, FGF-2) injections: possible roles in prevention of form-deprivation myopia in the chick. Brain Res 1995;682:169–81.

    Article  Google Scholar 

  49. 49

    Gernet H, Olbrich E . Excess of the human refraction curve. In: Gitter KA, Keeney AH, Sarin LK, Meyer D, editors. Ophthalmic ultrasound. St Louis: CV Mosby, 1969:142–8.

  50. 50

    Mark HH . Emmetropisation: physical aspects of a statistical phenomenon. Ann Ophthalmol 1972;4:39–01.

    Google Scholar 

  51. 51

    van Alphen GW . Choroidal stress and emmetropization. Vision Res 1986;26:723–34.

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Troilo D, Wallman J . The regulation of eye growth and refractive state: an experimental study of emmetropization. Vision Res 1991;31:1237–50.

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Johnson GJ, Mathews A, Perkins ES . Survey of ophthalmic conditions in a Labrador community. 1. Refractive errors. Br J Ophthalmol 1979;63:440–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Ingram RM, Arnold PE . Emmetropisation, squint and reduced visual acuity after treatment. Br J Ophthalmol 1991;75:414–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Parssinen O, Leskinen AL, Heikkinen E . Myopia, use of eye, and living habits among men aged 33-37. Acta Ophthalmol (Copenh) 1985;63:395–400.

    CAS  Article  Google Scholar 

  56. 56

    Mohan M, Pakrasi S, Garg SP . The role of environmental factors and hereditary predisposition in the causation of low myopia. Acta Ophthalmol Suppl 1988;185:54–7.

    CAS  PubMed  Google Scholar 

  57. 57

    Adams DW, McBrien NA . Prevalence of myopia and myopic progression in a population of clinical microscopists. Optom Vis Sci 1992;69:467–73.

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Tay MT, Au-Eong KG, Ng Cy, Lim MK . Myopia and educational attainment in 421 116 young Singaporean males. Ann Acad Med Singapore 1992;21:785–91.

    CAS  PubMed  Google Scholar 

  59. 59

    Wong L, Coggon D, Cruddas M, Hwang CH . Education, reading, and familial tendency as risk factors for myopia. J Epidemiol Community Health 1993;47:50–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Zylbermann R, Landau D, Berson D . The influence of study habits on myopia in Jewish teenagers. J Pediatr Ophthalmol Strabismus 1993;30:319–22.

    CAS  PubMed  Google Scholar 

  61. 61

    McBrien N, Adams D . A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometrie findings. Invest Ophthalmol Vis Sci 1997;38:321–33.

    CAS  Google Scholar 

  62. 62

    Shotwell AJ . Plus lens, prism, and bifocal effects on myopia progression in military students: II. Am J Physiol Opt 1984;61:112–7.

    CAS  Article  Google Scholar 

  63. 63

    Goss DA . Variables related to the rate of childhood myopia progression. Optom Vis Sci 1990;67:631–6.

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Wiesel TN, Raviola E . Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature 1977;266:66–77.

    CAS  Article  PubMed  Google Scholar 

  65. 65

    von Noorden GK, Crawford MLJ . Lid closure and refractive error in macaque monkeys. Nature 1978;272:53–4.

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Rob RM . Refractive errors associated with hemangioma of the eyelids and orbit in infancy. Am J Ophthalmol 1977;83:52–8.

    Article  Google Scholar 

  67. 67

    O'Leary DJ, Millodot M . Eyelid closure causes myopia in humans. Experientia 1979;3:1478–9.

    Article  Google Scholar 

  68. 68

    Hoyt CS, Stone RD, Fromer C, Billdon FA . Monocular axial myopia associated with neonatal eyelid closure in human infants. Am J Ophthalmol 1981;91:197–200.

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Gee SS, Tabbara KF . Increase in ocular axial length in patients with corneal opacification. Ophthalmology 1988;95:1276–78.

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Calossi A . Increase of ocular axial length in infantile traumatic cataract. Optom Vis Sci 1994;71:386–91.

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Weiss AH, Ross EA . Axial myopia in eyes with optic nerve hypoplasia. Graefes Arch Clin Exp Ophthalmol 1992;230:372–7.

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Nathan J, Kiely PM, Crewther SG, Crewther DP . Disease-associated visual image degradation and spherical refractive errors in children. Am J Optom Physiol Opt 1985;62:680–8.

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Stark N . Refractive errors in visually handicapped children. Klin Monatsbl Augenheilkd 1987;191:397–402.

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Saunders KJ, Woodhouse JM, Westall CA . Emmetropisation in human infancy: rate of change is related to initial refractive error. Vision Res 1995;35:1325–8.

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Ehrlich DL, Atkinson J, Braddick O, Bobier W, Durden K . The reduction of infant myopia: a longitudinal cycloplegic study. Vision Res 1995;35:1313–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Kempf GA, Collins SD, Jarman EL . Refractive errors in the eyes of children as determined by retinoscopic examination with a cycloplegic. Public health bulletin no. 192. Washington, DC: Government Printing Office, 1928.

  77. 77

    Koretz JF, Kaufman P, Neider MW, Goeckner PA . Accommodation and presbyopia in the human eye: aging of the anterior segment. Vision Res 1989;29:1685–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Ooi CS, Grosvenor T . Mechanisms of emmetropization in the ageing eye. Optom Vis Sci 1995;92:60–5.

    Article  Google Scholar 

  79. 79

    Demarcelle Y, Francois J, Goes F, Collignon-Brach J, Luyckx-Bacus J, Verbraeken H . Biometrie oculaire clinique. BullSoc Belge Ophtalmol 1976;172:part 1.

  80. 80

    Cook CA, Koretz JF, Pfahni A, Hyun J, Kaufman PL . Aging of the human crystalline lens and anterior segment. Vision Res 1994;34:2945–54.

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Brown NAP, Bron AJ . Lens disorders: a clinical manual of cataract diagnosis. Oxford: Butterworth-Heinemann, 1996.

  82. 82

    Nordmann J, Fink H, Hockin O . Die Wachstumskurve der menschlichen Linse. Graefes Arch Klin Exp Ophthalmol 1974;191:165–75.

    CAS  Article  Google Scholar 

  83. 83

    Farnsworth PN, Shyne SE . Anterior zonular shifts with age. Exp Eye Res 1979;28:291–7.

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Smith P . On the growth of the crystalline lens. Trans Ophthalmol Soc UK 1883;3:79–99.

    Google Scholar 

  85. 85

    Johansen EV . Undesogelser over det indbyrdes Storrelsesforhold mellum Cornea og Lens crystallina hos Mennesket. Copenhagen: Munksgaard, 1947.

  86. 86

    Willekens B, Kappelhof J, Vrensen G . Morphology of the aging human lens. I. Biomicroscopy and biometrics. Lens Res 1987;4:207–30.

    Google Scholar 

  87. 87

    Pierscionek BK . Presbyopia: effect of refractive index. Clin Exp Optom 1990;73:23–30.

    Article  Google Scholar 

  88. 88

    Lowe RF, Clark BAJ . Radius of curvature of the anterior lens surface: correlations in normal eyes and in eyes involved with primary angle-closure glaucoma. Br J Ophthalmol 1973;57:471–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Brown N . The change in lens curvature with age. Exp Eye Res 1974;19:175–83.

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Brown NAP, Hill AR . Cataract: the relationship between myopia and cataract morphology. Br J Ophthalmol 1987;71:405–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Young RW, Ocumpaugh DE . Autoradiographic studies on the growth and development of the lens capsule in the rat. Invest Ophthalmol 1966;5:583–93.

    CAS  PubMed  Google Scholar 

  92. 92

    Parmigiani CM, McAvoy JW . The roles of laminin and fibronectin in the development of the lens capsule. Curr Eye Res 1991;10:501–11.

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Niesel P . Visible changes of the lens with age. Trans Ophthalmol Soc UK 1982;102:327–30.

    PubMed  Google Scholar 

  94. 94

    Koretz JF, Cook CA, Kuszak JR . The zones of discontinuity of the human lens: development and distribution with age. Vision Res 1994;34:2955–62.

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Smith GTH, Smith RC, Brown NAP, Bron AJ, Harris ML . Changes in light scatter and width measurements from the human lens cortex with age. Eye 1992;6:55–9.

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Eckerskorn U, Kokkas K, Hockwin O, Laser H, Janke M . Physiological changes of lens transparency during ageing: a Scheimpflug photography study. Dev Ophthalmol 1989;17:72–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Huggert A . Are the discontinuity zones of the crystalline lens iso-indicial surfaces? Acta Ophthalmol (Copenh) 1946;24:417–21.

    Article  Google Scholar 

  98. 98

    Pierscionek BK, Augusteyn RC . Structure / function relationship between optics and biochemistry of the lens. J Lens Eye Toxic Res 1991;8:229–43.

    CAS  Google Scholar 

  99. 99

    Koretz J, Handleman JH . The ‘lens paradox’ and image formation in accommodating human eyes. In: Duncan G, editor. The lens: transparency and cataract. Eurage, 1986:57–64.

  100. 100

    Grosvenor T . Reduction in axial length with age: an emmetropizing mechanism for the adult eye? Am J Optom Physiol Optics 1987;64:657–63.

    CAS  Article  Google Scholar 

  101. 101

    Siebinga I, Vrensen GFJM, deMul FFM, Greve J . Age-related changes in local water and protein content of human eye lenses measured by Raman microspectroscopy. Exp Eye Res 1991;53:233–9.

    CAS  Article  PubMed  Google Scholar 

  102. 102

    Fagerholm PP, Phillipson BT, Lindstrom A . Normal human lens: distribution of protein. Exp Eye Res 1981;33:615–20.

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Bessems GJH, Bours J, Hof man D, et al. Molecular mass distribution of water-soluble crystallins from the human foetal lens during development. J Chromatogr 1990;529:277–86.

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Cook CA, Koretz JF . Modelling the optical properties of the aging human crystalline lens from computer processed Scheimpflug images in relation to the lens paradox. Technical series on vision sciences and its applications. Optical Society of America, 1995:138–42.

  105. 105

    Sorsby A, Benjamin JB, Davey M, Sherridan M, Tanner JM . Emmetropia and its aberrations. London: Her Majesty's Stationery Office, 1957.

  106. 106

    Francois J, Goes F . Oculometry in emmetropia and ametropia. In: Bock J, Ossoining K, editors. Ultrasonic medica. Vienna: Verlag der Wiener Med Akad, 1971:473–515.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas Phelps Brown.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, N., Koretz, J. & Bron, A. The development and maintenance of emmetropia. Eye 13, 83–92 (1999). https://doi.org/10.1038/eye.1999.16

Download citation

Keywords

  • Emmetropia
  • Emmetropisation
  • Eye growth
  • Lens growth
  • Lens paradox
  • Refractive components

Further reading

Search

Quick links